Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 1197-1203 
    ISSN: 0887-6266
    Keywords: lamellar structures ; small angle x-ray scattering ; starch ; gelatinization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The architecture of the starch granule, and its subsequent disruption due to the application of heat and water, known as gelatinization, is of wide interest. Small-angle x-ray scattering (SAXS) techniques have been used to study gelatinization in limiting and excess water. SAXS allows the absorption of water into the differing regions of the starch granule to be monitored. In excess water, a process of cooperative melting can be seen. In limiting water, the crystalline order melts at a higher temperature. These features have been studied, and observed features of the gelatinization related to those known from other techniques. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1617-1624 
    ISSN: 0887-6266
    Keywords: hydrogen-bonded living polymers ; supramolecular ; liquid crystalline polymers ; X-ray scattering ; Fourier transform infrared (FTIR) ; structure ; association chain polymers ; self-assembly ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A main chain hydrogen-bonded liquid crystalline polymer was formed by melt mixing two complementary components, A and B, which in their individual states do not exhibit liquid crystallinity. The structure of the polymer and the thermal stability of its mesophase were studied using synchrotron radiation SAXS/WAXS/DSC at Daresbury (UK) and by variable temperature Fourier transform infrared. The chain extension, or “polymerization” process, was accelerated at the point when the polymer formed a liquid crystalline phase upon cooling from the isotropic melt. The polymer has an aabb chain structure and forms a smectic layer with a length of the A-B repeating unit. The hydrogen-bonded main chain polymer studied here is a monotropic liquid crystal. Above 150°C, it exhibits kinetic stabilization of its monotropic smectic phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1617-1624, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...