Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 26 (1994), S. 423-434 
    ISSN: 1573-5028
    Keywords: cucumber ; Cucumis sativus ; germination ; gluconeogenesis ; phosphoenolpyruvate carboxykinase ; senescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA library from RNA of senescing cucumber cotyledons was screened for sequences also expressed in cotyledons during post-germinative growth. One clone encodes ATP-dependent phosphoenolpyruvate carboxykinase (PCK; EC 4.1.1.49), an enzyme of the gluconeogenic pathway. The sequence of a fulllength cDNA predicts a polypeptide of 74397 Da which is 43%, 49% and 57% identical to bacterial, trypanosome and yeast enzymes, respectively. The cDNA was expressed in Escherichia coli and antibodies raised against the resultant protein. The antibody recognises a single polypeptide of ca. 74 kDa, in extracts of cotyledons, leaves and roots. The cucumber genome contains a single pck gene. In the seven-day period after seed imbibition, PCK mRNA and protein steady-state levels increase in amount in cotyledons, peaking at days 2 and 3 respectively, and then decrease. Both accumulate again to a low level in senescing cotyledons. This pattern of gene expression is similar to that of isocitrate lyase (ICL) and malate synthase (MS). When green cotyledons are detached from seedlings and incubated in the dark, ICL and MS mRNAs increase rapidly in amount but PCK mRNA does not. Therefore it seems unlikely that the glyoxylate cycle serves primarily a gluconeogenic role in starved (detached) cotyledons, in contrast to post-germinative and senescing cotyledons where PCK, ICL and MS are coordinately synthesised. While exogenous sucrose greatly represses expression of icl and ms genes in dark-incubated cotyledons, it has a smaller effect on the level of PCK mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: cucumis sativus ; germination ; glyoxysome ; NAD-malate dehydrogenase ; peroxisome ; senescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length cDNA clone encoding microbody NAD+-dependent malate dehydrogenase (MDH) of cucumber has been isolated. The deduced amino acid sequence is 97% identical to glyoxysomal MDH (gMDH) of watermelon, including the amino terminal putative transit peptide. The cucumber genome contains only a single copy of this gene. Expression of this mdh gene increases dramatically in cotyledons during the few days immediately following seed imbibition, in parallel with genes encoding isocitrate lyase (ICL) and malate synthase (MS), two glyoxylate cycle enzymes. The level of MDH, ICL and MS mRNAs then declines, but then MDH mRNA increases again together with that of peroxisomal NAD+-dependent hydroxypyruvate reductase (HPR). The mdh gene is also expressed during cotyledon senescence, together with hpr, icl and ms genes. These results indicate that a single gene encodes MDH which functions in both glyoxysomes and peroxisomes. In contrast to icl and ms genes, expression of the mdh gene is not activated by incubating detached green cotyledons in the dark, nor is it affected by exogenous sucrose in the incubation medium. The function of this microbody MDH and the regulation of its synthesis are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...