Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 218-232 
    ISSN: 0887-3585
    Keywords: protein conformation ; protein stability ; sensitivity analysis ; avian pancreatic polypeptide (APP) ; molecular dynamics simulation ; OPLS/Amber force field ; continuum solvation model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Computer simulations utilizing a classical force field have been widely used to study biomolecular properties. It is important to identify the key force field parameters or structural groups controlling the molecular properties. In the present paper the sensitivity analysis method is applied to study how various partial charges and solvation parameters affect the equilibrium structure and free energy of avian pancreatic polypeptide (APP). The general shape of APP is characterized by its three principal moments of inertia. A molecular dynamics simulation of APP was carried out with the OPLS/Amber force field and a continuum model of solvation energy. The analysis pinpoints the parameters which have the largest (or smallest) impact on the protein equilibrium structure (i.e., the moments of inertia) or free energy. A display of the protein with its atoms colored according to their sensitivities illustrates the patterns of the interactions responsible for the protein stability. The results suggest that the electrostatic interactions play a more dominant role in protein stability than the part of the solvation effect modeled by the atomic solvation parameters. © 1995 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 18 (1997), S. 888-901 
    ISSN: 0192-8651
    Keywords: Brownian dynamics simulations ; sensitivity analysis ; radiation damage to DNAs ; hydrated electron ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: As a first step toward developing simulation models for studying the indirect mechanism of radiation damage to DNAs, we have carried out Brownian dynamics simulations to study the reactions of hydrated electrons with a 12-base-pair B-DNA, (dA)12(dT)12, and with bases, monodeoxynucleotides, and polydeoxynucleotides. We first studied in detail the sensitivity of diffusion reaction rate constants to different model and simulation parameters. Based on the sensitivity studies, a set of model and simulation parameters was obtained for the final production runs. The use of this set of parameters reduced the computational costs but delivered reasonably reliable results. The calculated reaction rate constants were in qualitative agreement with experiments. For the DNA double-helix, (dA)12(dT)12, the simulations demonstrated that hydrated electrons preferred to attack the two ends of the double-helix. Electrostatic interactions between the DNA and the hydrated electrons make the T strand more susceptible to attack than the A strand. The increased reactivity of the T strand due to electrostatic interactions results from the increased reactivity of the C6 sites of the thymine bases, at the expense of the reactivity of the C8 sites of the adenine bases. The reactivity of the relatively buried reactive sites of the adenine and thymine bases are less affected by electrostatic interactions. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 888-901, 1997
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...