Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 23 (1997), S. 41-78 
    ISSN: 1573-5087
    Keywords: cell cycle ; cytokinin ; intracellular calcium ; methylation ; protein phosphorylation ; signal transduction ; two-component regulator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Current understanding of cytokinin (CK) physiology at the cellular level results largely from the manipulation of endogenous CK levels by either application of exogenous CKs or the expression of CK biosynthetic transgenes, as well as the characterisation of single gene mutants. Cytokinins modulate changes in plant gene expression, which are in turn assumed to effect physiological and morphological changes with which CK action is associated. Presently, a major focus of investigation is elucidation of the biochemical events leading from the perception of CK to the manifestation of a response. Analysis of the expression patterns of CK-regulated genes and identification of their products provides one means of investigating CK action at the molecular level. Biochemical approaches have led to the identification of several soluble CK-binding proteins, although their functional roles in CK signalling largely remain uncertain. Conclusive identification of a bona fide CK receptor has yet to be achieved, although several potential candidates have been suggested. Pharmacological and molecular genetic strategies have implicated the involvement of signalling mechanisms likely to be involved in CK action. The apparent involvement of fluctuations in the concentration of intracellular Ca2+, changes in protein phosphorylation as well as DNA and/or protein methylation provide information concerning the types of proteins likely to be involved in the process. Dissection of CK signal transduction chains and elucidation of their interaction with other pathways that regulate plant growth and development is likely to be essential in understanding the mode of action of this poorly understood class of plant growth regulator. However, integration of this knowledge with an improved understanding of the mechanisms whereby overall hormone homeostasis is regulated at the metabolic level will be necessary for comprehensive appreciation of the influence of CKs on plant morphology and physiology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 23 (1997), S. 79-103 
    ISSN: 1573-5087
    Keywords: cytokinin ; environmental stress ; MAP kinase cascade ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cytokinin (CK) levels tend to decrease under adverse environmental conditions. A general view has emerged that during stress, a reduction of CK supply from the root alters gene expression in the shoot and thereby elicits appropriate responses to ameliorate the effects of stress. However, recent studies have indicated that transcription of many stress-inducible genes can also be caused by CK application. This review attempts to highlight some of these apparently paradoxical findings and to suggest potential approaches for future research in this area. Changes in patterns of gene expression associated with responses to adverse environmental conditions are most probably the end products of hierarchical changes in regulatory controls exercised at hormonal, developmental and morphological levels. We consider possible roles for CKs in affecting overall hormonal balance following the imposition of environmental stresses, and thereby playing a role in systemic responses to stress. Particular attention is devoted to the interactions of CKs with ABA, ethylene, salicylic acid and jasmonates, all of which are known to be involved in plant stress responses. The recent emergence of MAPK-type cascades in mediating responses to several environmental modifications is discussed in relation to their possible modulation by CKs. Since CKs are likely to elicit their effects at the level of gene expression and stress-induced alterations in gene expression are usually rapid and repeatable, molecular analysis of CK-regulated stress-inducible genes may contribute to enhanced understanding of CK-mediated signal transduction in plants. In this regard, examination of stress responses of transgenic plants with altered levels of endogenous CKs as well as mutants altered in CK metabolism or signalling may be informative. Emerging evidence that CKs may impact on methylation reactions is discussed in relation to the apparent importance of methyl group transfers in the biochemical acclimation to environmental stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 23 (1997), S. 105-122 
    ISSN: 1573-5087
    Keywords: circadian rhythm ; cytokinins ; phytochrome ; pigments ; seed germination ; seedling development ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cytokinins (CKs) and light can elicit similar morphogenic and biochemical responses in a wide range of plant species. Contradictory reports have been presented that CKs and phytochrome may have independent or identical mechanisms of action in photomorphogenic processes. These reports, relating to seed dormancy and germination, seedling development and growth efficiency, pigment production, and the photoperiodic control of flowering are reviewed. Based on historical data and recent genetic approaches using Arabidopsis mutants, the possible role of CKs in physiological and biochemical pathways affected by light are discussed briefly. Together with the phytochrome system, CKs may contribute towards entrainment of circadian rhythms and thus participate in photoperiodic signalling. Both light and CKs apparently also participate in nutrient assessment pathways. Current models propose that light and CKs might act independently or sequentially through common signal transduction intermediates to control the same downstream responses. We presently have a poor understanding of the mechanism(s) whereby these signals are integrated at the molecular level and the physiological significance of the apparent overlap between the actions of phytochrome and CK cannot yet be fully appreciated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 21 (1997), S. 79-102 
    ISSN: 1573-5087
    Keywords: environmental stress ; metabolic regulation ; oxidative pentose phosphate pathway ; proline ; pyrroline-5-carboxylate reductase ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In many plants, free proline accumulates in response to the imposition of a wide range of biotic and abiotic stresses. Controversy has surrounded the extent to which this shift in nitrogen metabolism benefits plants under adverse environmental conditions. Most attempts to account for the phenomenon have focused on the ability of proline to mediate osmotic adjustment, stabilise subcellular structures and scavenge free radicals. However, often the cytoplasmic pool of free proline even after the imposition of stress is insufficient size to account for pronounced biophysical effects. Alternatively, selective preservation of this stress-induced response may relate to endpoints other than simply augmenting the cellular pool of free proline. Proline accumulation may reduce stress-induced cellular acidification or prime oxidative respiration to provide energy needed for recovery. High levels of proline synthesis during stress may maintain NAD(P)+/NAD(P)H ratios at values compatible with metabolism under normal conditions. Consideration of the cofactor preference of plant Δ1-pyrroline-5-carboxylate (P5C) reductase as well as the in vivo concentrations of the two pyridine nucleotide cofactors and their respective redox ratios suggests that even a small increase in proline biosynthesis might have a large impact on the level of reduction of the cellular NADP pool. The increased NADP+/NADPH ratio mediated by proline biosynthesis is likely to enhance activity of the oxidative pentose phosphate pathway. This would provide precursors to support the demand for increased secondary metabolite production during stress as well as nucleotide synthesis accompanying the accelerated rate of cell division upon relief from stress, when oxidation of proline is likely to provide an important energy source for ADP phosphorylation. Thus, the extreme sensitivity of the metabolic processes of proline synthesis and degradation themselves may be of benefit by regulating metabolic processes adversely affected by stress. This viewpoint is supported by consideration of other physiological phenomena not directly related to stress responses, but in which proline metabolism may also play a regulatory role. A mechanism is proposed whereby the interconversions of proline and P5C in different cell types and the associated transfer of redox potential between tissues may constitute a form of metabolic signalling within higher plants. Stress-related alterations in proline metabolism may impinge on systems of redox control of plant gene expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...