Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 7 (1996), S. 1-40 
    ISSN: 1572-9729
    Keywords: bacteria ; degradation ; fungi ; pentachlorophenol ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pentachlorophenol (PCP) was the most prevalent wood preservative for many years worldwide. Its widespread use had led to contamination of various environments. Traditional methods of PCP clean-up include storage in land-fill sites, incineration and abiotic degradation processes such as photodecomposition. Some aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions. Axenic bacterial cultures, Flavobacterium sp., Rhodococcus sp., Arthrobacter sp., Pseudomonas sp., Sphingomonas sp., and Mycobacterium sp., and fungal cultures, Phanerochaete sp. and Trametes sp. exhibit varying rates and extent of PCP degradation. This paper provides some general information on properties of PCP and reviews the influence of nutrient amendment, temperature and pH on PCP degradation by various aerobic and anaerobic microorganisms. Where information is available, proposed degradation pathways, intermediates and enzymes are reviewed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: bioassays ; bioremediation ; microbiology ; PCP ; soil ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Five bioassays were used to measure toxicity during bioremediation of a soil contaminated with pentachlorophenol (PCP; 335 ppm), polycyclic aromatic hydrocarbons (PAHs; 1225 ppm) and petroleum hydrocarbons (19 125 ppm). Different bioremediation treatments were tested in soil microcosms including amendment with phosphorus and/or PCP-degrading Pseudomonas sp. UG30, either as free cells or encapsulated in κ-carrageenan. Soil toxicity was monitored using the solid-phase Microtox test, SOS-chromotest, lettuce seed germination, earthworm survival and sheep red blood cell (RBC) haemolysis assays. PCP levels were reduced in all treatments after 210 days. The RBC lysis assay, Microtox test and SOS-chromotest indicated reduced toxicity in most of the microcosms by day 210. Trends depicted by lettuce seed germination and earthworm survival LC50 values varied with each treatment. For example, in soil amended with phosphorus, both the seed germination and earthworm survival LC50 data suggested increased soil toxicity. However, for soil treated with encapsulated Pseudomonas sp. UG30 cells, the earthworm survival LC50 data indicated reduced toxicity while seed germination LC50 values showed little change from values obtained prior to bioremediation. Our results show that toxicity trends in a contaminated soil during bioremediation differ according to the assay used.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 59 (1994), S. 53-59 
    ISSN: 0268-2575
    Keywords: biosurfactants ; hydrocarbons ; Pseudomonas aeruginosa ; soil ; solubility ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: The ability of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa UG2 to wash a model hydrocarbon mixture from unsaturated soil columns was studied. Both aliphatic and aromatic hydrocarbons were effectively removed without soil clogging with non-recirculating biosurfactant solutions. Recirculation of wash solutions did not substantially affect washing efficiency. Of the several chemical surfactants tested, only Triton X-100 provided comparable hydrocarbon washing efficiency without soil clogging. The results suggest that UG2 biosurfactants have the potential for remediation of hydrophobic pollutants in unsaturated soil.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...