Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: host recognition ; hsnD (nodH) ; nod genes ; Rhizobium ; root hair deformation ; symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of the hsnD (nodH) gene in the determination of the host-specific nodulation ability of Rhizobium meliloti was studied by expressing the common nodulation genes (nodABC) with or without the hsnD gene in Escherichia coli and testing for biological activity on various leguminous plants. In this way, four categories of plants were established. Upon infection with E. coli carrying the nodABC construct, root hair deformation (Had) was detected on clovers while the hsnD gene was additionally needed for the elicitation of the same response on alfalfa and sweet clover. A weak root hair deformation was seen on siratro by inoculation with E. coli harbouring the nodABC genes and was highly increased when hsnD was also introduced. Cowpea and Desmodium did not respond to any of the E. coli strains constructed. Exudates or cytosolicfractions of the respective E. coli derivatives elicited the same root hair deformation as the intact bacteria. These data indicate that not only the nodABC gene products but also the hsnD product are involved in the synthesis of Had factors. Subclones expressing only the nodA, nodB, or nodC genes or the same genes in pairs (nodAB, nodBC, nodAC) did not provide a compound with activity comparable to the NodABC factor, suggesting that all three genes are required for the production of the Had factor which is active on clover. Coinoculation of alfalfa plants with two strains of E. coli, one carrying the nodABC genes and the other expressing only hsnD, or combining exudates or cytosolic fractions from these strains did not result in root hair deformation on alfalfa. These data indicate that the HsnD protein itself or its product is not an additional alfalfa-specific extracellular signal but more likely is enzymatically involved in the modification of the basic compound determined by the nodABC genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: Key words ; alfalfa ; chalcone synthase ; dihydroflavonol-4 reductase ; flavanone-3 hydroxylase ; flavonoid ; symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Flavonoids are plant phenolic compounds involved in leguminous plant-microbe interactions. Genes implied in the central branch (chalcone synthase (CHS), chalcone isomerase (CHI)) or in the isoflavonoid branch of the flavonoid biosynthesis pathway have been characterized in Medicago sativa. No information is available to date, however, on genes whose products are involved in the synthesis of other types of flavonoids. In this paper we present the genomic organization as well as the nucleotide sequence of one flavanone-3-hydroxylase (F3H) encoding gene of M. sativa, containing two introns and exhibiting 82–89% similarity at the amino acid level to other F3H proteins. This is the first report on the gennomic organization of a f3h gene so far. We present also the sequence of a partial dihydroflavonol-4-reductase (DFR) M. sativa cDNA clone. Southern blot experiments indicated that f3h and dfr genes are each represented by a single gene within the tetraploid genome of M. sativa. By a combination of Northern blot and RT-PCR analysis, we showed that both f3h and dfr genes are expressed in flowers, nodules and roots, with a pattern distinct from chs expression. Finally, we show that dfr is expressed in M. sativa leaves whereas f3h is not. The role played by these two genes in organs other than flowers remains to be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...