Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 2229-2236 
    ISSN: 0887-624X
    Keywords: metathesis polymerization ; phenylacetylene derivative ; transition-metal catalyst ; (p-tert-butyl-o,o-dimethylphenyl)acetylene ; substituted polyacetylene ; thermal stability ; gas permeability ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: (p-tert-Butyl-o,o-dimethylphenyl)acetylene (BDMPA) polymerized in high yields in the presence of W and Mo catalysts. Especially the W(CO)6-CCl4-hv catalyst quantitatively produced a polymer totally soluble in toluene and chloroform. The weight-average molecular weight of this polymer exceeded 2 × 106. Poly(BDMPA) was a dark brown solid, and had alternating double bonds along the main chain. The weight loss of the polymer in air occurred only above 300°C, indicating a fairly high thermal stability. A free-standing film could be fabricated by solution casting. The electrical conductivity of the polymer at 25°C was 1 × 10-13 S cm-1. The oxygen permeability coefficient and the separation factor of O2 vs. N2 of the polymer at 25°C were 67 barrers and 3.2, respectively. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 31 (1993), S. 547-552 
    ISSN: 0887-624X
    Keywords: poly(diphenylacetylene) ; metathesis polymerization ; tantalum catalyst ; thermal stability ; gas permeability ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Polymerization and polymer properties of diphenylacetylenes with bulky silyl groups (SiMe2-i-Pr, SiMe2-t-Bu, SiMe2Ph, SiEt3) at para or meta position were studied under comparison with those of the SiMe3 derivatives. The present monomers polymerized in good yields with TaCl5-cocatalysts to form high molecular-weight polymers (Mw 〉 4 × 105). The polymer yields of para-substituted monomers were similar to that of the SiMe3 derivative, while those of meta substituted monomers were lower than that of m-SiMe3 derivative. Most of the polymers were totally soluble in common solvents such as toluene and CHCl3, although the polymers with p-SiMe2-t-Bu and p-SiMe2Ph groups were partly insoluble in all solvents. These polymers resembled SiMe3-containing homologues in the UV-visible absorption and thermal stability. The oxygen permeability coefficients of these polymers were in the range of 10-9-10-8 cm3 (STP) cm/(cm2·s cm Hg) - lower than those of the corresponding SiMe3-containing polymers. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 2925-2929 
    ISSN: 0887-624X
    Keywords: substituted polyacetylene ; poly(diphenylacetylene) ; germanium-containing polymer ; metathesis polymerization ; tantalum catalyst ; thermal stability ; gas permeability ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 1-Phenyl-2-[m-(trimethylgermyl)phenyl]acetylene (m-Me3GeDPA) and 1-phenyl-2-[p-(trimethylgermyl)phenyl]acetylene (p-Me3GeDPA) polymerized with TaCl5-cocatalyst systems to provide in high yields new polymers having weight-average molecular weights over 1 × 106. Poly(m-Me3GeDPA) was a yellow solid, which completely dissolved in toluene, chloroform, etc., to form a tough film by solution casting. Poly(p-Me3GeDPA) was also a yellow solid and partly insoluble in any solvents. The onset temperatures of weight loss for these polymers in the thermogravimetric analysis in air were as high as ca. 400°C. The oxygen permeability coefficient of poly(m-Me3GeDPA) was 1100 barrers (25°C), which is about twice that of poly(dimethylsiloxane). © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 2523-2530 
    ISSN: 0887-624X
    Keywords: substituted polyacetylene ; poly (diphenylacetylene) ; metathesis polymerization ; tantalum catalyst ; solubility ; thermal stability ; gas permeability ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 1-(p-t-Butylphenyl)-2-phenylacetylene and 1-(p-n-butylphenyl)-2-phenylacetylene were polymerized in catalytic systems based on TaCl5 to give new polymers in high yields. These monomers were more reactive than diphenylacetylene (DPA) in copolymerization. Unlike poly (DPA), the present polymers were soluble in toluene, CHCl3, etc. owing to the high configurational entropy induced by the para-substituents. Their relative weight-average molecular weights determined by GPC were in the range of 6 × 105-36 × 105, and films could be obtained by solution casting. These polymers were fairly thermally stable, as seen from their high onset temperatures (320-380°C) of weight loss in TGA in air. The oxygen permeability coefficient of the polymer with t-Bu group was 1100 barrers, the highest among those of all the hydrocarbon polymers. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...