Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1618-2545
    Keywords: basidiomycete ; α-glucose 1-phosphate formation ; Pleurotus ostreatus ; trehalose ; trehalose phosphorylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pleurotus ostreatus produced a high activity of α-glucose 1-phosphate (α-Glc 1-P) forming trehalose phosphorylase in vegetative mycelia and fruit-bodies. The enzyme was purified to homogeneity from the fruit-bodies by a procedure involving ammonium sulfate fractionation, DEAE-cellulose column chromatographies and cellulose phosphate column chromatographies. The enzyme catalyzes both the phosphorolysis of trehalose to produce α-Glc 1-P and glucose, and the synthesis of trehalose. It was not active toward other α- or β-glucosyl disaccharides and polysaccharides. The optimum pH was 7.0 for phosphorolysis and 6.4 for synthesis of trehalose. The Km values for trehalose and Pi in phospholytic reaction were 75 mM and 4.2 mM, respectively. Those for glucose and α-Glc 1-P in synthetic reaction were 505 mM and 38 mM, respectively. The estimated molecular mass by the sedimentation equilibrium method using an ultracentrifuge was 120 kDa. The molecular mass of the subunit (61 kDa) by SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a dimer of two identical subunits. The addition of glycerol higher than 25% into the enzyme solution stabilized its activity. The removal of phosphorus ions from the enzyme solution, by means of dialysis or electrophoresis, caused inactivation of the enzyme, probably by dissociation of the holoenzyme into the subunit proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...