Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0662
    Keywords: Dichloromethane ; precipitation scavenging ; washout ; wet deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract An experimental study of the scavenging of dichloromethane vapor by water drops falling at terminal velocity, has been carried out in the UCLA precipitation shaft, in order to test the predictions of theoretical washout models. Whereas good agreement between theory and experiment was found for drops of radius 0.332 mm, computed gas uptake rates for 1.253 and 2.21 mm radius drops were much slower than those measured, just as reported previously for the washout of both sulfur dioxide and acetaldehyde. An analysis shows that theory can be reconciled with all of the experimental data by replacing the compound specific aqueous phase Fickian molecular diffusion coefficient used in the theory, by an ‘effective diffusivity’, having a constant value, (3×10-4 cm2 s-1), independent of the physical and chemical nature of the absorbed species, for all drops of equivalent radii greater than 0.9 mm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 8 (1989), S. 1-18 
    ISSN: 1573-0662
    Keywords: Gas scavenging ; mass transfer ; washout ; wet deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Theoretical models that describe the uptake of trace gases by water drops falling at terminal velocity in air have been extended to include the effects of aqueous phase chemical processes that occur on time scales comparable with or greater than that over which the relevant physical scavenging processes operate. In particular, the case of reversible dervative formation by the absorbed species has been treated, and illustrated by application to the absorption of acetaldehyde under conditions prevailing in the atmosphere. In addition, the relative influences of aqueous phase chemistry and of convective-diffusion on the efficiency of the scavenging process have been explored more generally, using the revised models. A brief comparison of the factors controlling the uptake of sulfur dioxide, dichloromethane, and acetaldehyde is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...