Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 6.2008, 1, A8 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Phenol biodegradation by mixed culture was studied in a membrane bioreactor (MBR) over a period of 285 days. Activated sludge was used as the MBR biomass, after controlled acclimation to high phenol concentrations. The MBR permeate flux was stabilized quickly (in a few hours) and always maintained above 90 L.h-1.m-2.bar-1. The acclimatized activated sludge allowed significant phenol degradation (95% average COD removal efficiency and greater than 99% phenol removal efficiency) without supplemental reagent addition. After sludge acclimatization, the Haldane kinetics model for a single substrate was used to obtain the maximum specific growth rate (µm = 0.438 h-1), the half saturation coefficient (Ks = 29.54 mg.L-1) and the substrate inhibition constant (Ki = 72.45 mg.L-1). Biodegradation experiments were conducted at different phenol concentrations (4.9 - 8.5 g.L-1 d-1). Although the phenol concentration was high, the Haldane model was still acceptable, and removal capacities were in agreement with literature. Excellent effluent quality was obtained regardless of the extremely short SRT (5 - 17 days). This work shows the potential of MBR for toxic chemical elimination, charged effluents treatment and process stability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...