Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 37 (1972), S. 3357-3358 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 32 (1998), S. 59-94 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Escherichia coli must actively transport many of its proteins to extracytoplasmic compartments such as the periplasm and outer membrane. To perform this duty, E. coli employs a collection of Sec (secretion) proteins that catalyze the translocation of various polypeptides through the inner membrane. After translocation across the inner membrane, periplasmic and outer-membrane proteins are folded and targeted to their appropriate destinations. Here we review our knowledge of protein translocation across the inner membrane. We also discuss the various signal transduction systems that monitor extracytoplasmic protein folding and targeting, and we consider how these signal transduction systems may ultimately control these processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 37 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Cpx envelope stress response of Escherichia coli is controlled by a two-component regulatory system that senses misfolded proteins in extracytoplasmic compartments and responds by inducing the expression of envelope protein folding and degrading factors. We have proposed that in the absence of envelope stress the pathway is maintained in a downregulated state, in part through interactions between the periplasmic inhibitor molecule CpxP and the sensing domain of the histidine kinase CpxA. In this study, we show that depletion of the periplasmic contents of the cell by spheroplast formation does indeed lead to induction of the Cpx envelope stress response. Further, removal of CpxP is an important component of this induction because tethering an MBP–CpxP fusion protein to the spheroplast inner membranes prevents full activation by this treatment. Spheroplast formation has previously been demonstrated to induce the expression of a periplasmic protein of unknown function, Spy. Analysis of spy expression in response to spheroplast formation by Western blot analysis and by lacZ operon fusion in various cpx mutant backgrounds demonstrated that spy is a member of the Cpx regulon. Interestingly, although the only known spy homologue is cpxP, Spy does not appear to perform the same function as CpxP as it is not involved in inhibiting the Cpx envelope stress response. Rather, deletion of spy leads to activation of the σE stress response. Because the σE response is specifically affected by alterations in outer membrane protein biogenesis, we think it possible that Spy may be involved in this process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 13 (1974), S. 993-999 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 55 (2001), S. 591-624 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Envelope stress responses play important pysiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigmaE envelope stress response of Escherichia coli. The sigmaE pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 20 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Escherichia coli, levels of the two major outer membrane porin proteins, OmpF and OmpC, are regulated in response to a variety of environmental parameters, and numerous factors have been shown to influence porin synthesis. EnvZ and OmpR control porin-gene transcription in response to osmolarity, and the anti-sense RNA, MicF, influences ompF translation. In contrast to these characterized factors, some of the components reported to influence porin expression have only modest effects and/or act indirectly. For others, potential regulatory roles, although intriguing, remain elusive. Here we review many of the components that have been reported to influence porin expression, address the potential regulatory nature of these components, and discuss how they may contribute to a regulatory network controlling porin synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Science Ltd
    Molecular microbiology 17 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: OmpR, the transcriptional regulator of the ompF and ompC porin genes, is a member of a novel class of DNA-binding proteins. The mechanism(s) by which this class of proteins interacts with target DNA sites is not understood. To address this issue, we investigated the nature of the DNA sequences recognized by OmpR. A 36 bp DNA fragment was identified that is capable of supporting OmpR-DNA interaction in vivo. The base pairs within this region of DNA that are critical to this interaction were identified by isolating mutations within the fragment that hinder normal OmpR-DNA binding. The results obtained provide insights concerning the nature of the sequences recognized by OmpR and also support a model in which co-operative binding is involved in OmpR-DNA interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 29 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: RpoS, an alternative primary sigma factor, has been shown to be regulated at multiple levels, including transcription, translation and protein stability. Here, we present evidence that suggests that RpoS is regulated at yet another level by the product of the crl gene. The crl gene was first thought to encode the major curlin subunit of curli (curli are surface structures that are induced by growth into stationary phase under conditions of low osmolarity and low temperature). Later, it was determined that crl actually contributes in a positive fashion to stimulate transcription of csgBA, the true locus encoding for the major subunit of curli. RpoS is also required for normal stationary-phase induction of csgBA. We found that lesions in crl, like lesions in rpoS, cause increased transcription of ompF during stationary phase. Taken together, these observations prompted us to analyse the effects of crl on an additional RpoS-regulated phenomenon. We found that a crl null allele influences expression of RpoS-regulated genes in a fashion similar to an rpoS null allele. Genetic evidence suggests that crl and rpoS function in a single pathway and that Crl functions upstream, or in concert with, RpoS. Although the effects of Crl on RpoS-regulated genes is entirely dependent on the integrity of RpoS, the presence of a crl null allele does not decrease the level of RpoS protein. Thus, we propose that Crl stimulates the activity of the RpoS regulon by stimulating RpoS activity during stationary phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The processing-defective outer membrane porin protein LamBA23D (Carlson and Silhavy, 1993) and a tripartite fusion protein, LamB-LacZ-PhoA (Snyder and Silhavy, 1995), are both secreted across the cytoplasmic membrane of Escherichia coli, where they exert an extracytoplasmic toxicity. Suppressors of these toxicities map to a previously characterized gene, cpxA, that encodes the sensor kinase protein of a two-component regulatory system. These activated cpxA alleles, designated as cpxA*, stimulate transcription of the periplasmic protease DegP (Danese et aL, 1995), which in turn catalyses degradation of the tripartite fusion protein. In contrast, degradation of precursor LamBA23D is not significantly stimulated in a cpxA* suppressor background. In fact, increased levels of DegP in a wild-type background stabilized this protein. While a functional degP gene is required for full cpxaA* -mediated suppression of both toxic envelope proteins, residual suppression is seen in cpxA*degP::Tn10 double mutants. Furthermore, cpxA* mutations suppress the toxicity conferred by the LamB-LacZ hybrid protein, which exerts its effects in the cytoplasm, sequestered from DegP. Together, these observations suggest that the activated Cpx pathway regulates additional downstream targets that contribute to suppression. A subset of these targets may constitute a regulon involved in relieving extracytoplasmic and/or secretion-related stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 16 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...