Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 138 (1984), S. 49-53 
    ISSN: 1432-072X
    Keywords: Lactobacillus plantarum ; Oxygen utilization ; Hydrogen peroxide accumulation ; Acetate accumulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The growth rate of Lactobacillus plantarum in a complex medium with 55.6 mM glucose decreased during aerobic incubation (relative to anaerobic incubation). The decrease occurred much earlier than an increase in the rate of oxygen utilization by the culture which led to H2O2 accumulation. The concentration of H2O2 accumulated in the medium was easily tolerated by the culture and elimination of the H2O2 did not prevent the decrease in growth rate. Increased O2 utilization was accompanied by a switch in metabolism which resulted in acetate rather than lactate accumulation in aerobic cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-072X
    Keywords: Lactobacillus plantarum ; Oxygen utilization ; Hydrogen peroxide accumulation ; NADH oxidase ; Pyruvate oxidase ; NADH peroxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two strains of Lactobacillus plantarum accumulated H2O2 when grown aerobically in a complex glucose based medium. The H2O2 accumulation did not occur immediately on exposure of the culture to O2 but was delayed for a time which, in the case of one strain, was dependent on the amount of inoculum used to seed the culture. The accumulation was always preceded by an increase in the rate of O2 utilization by the cultures. The latter coincided approximately with an increase in specific activity of NADH oxidase, pyruvate oxidase and NADH peroxidase. H2O2 was not a product of NADH oxidase in vitro but was formed in substantial quantities from O2 during oxidation of pyruvate. The three enzymes were induced by O2 and H2O2; the induction of NADH oxidase responded to lower levels of O2 (but not of H2O2) than the pyruvate oxidase or the NADH peroxidase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 141 (1985), S. 75-79 
    ISSN: 1432-072X
    Keywords: Lactobacillus plantarum ; Lactate utilization ; Oxygen utilization ; Lactate to acetate pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lactobacillus plantarum P5 grew aerobically in rich media at the expense of lactate; no growth was observed in the absence of aeration. The oxygen-dependent growth was accompanied by the conversion of lactate to acetate which accumulated in the growth medium. Utilization of oxygen with lactate as substrate was observed in buffered suspensions of washed whole cells and in cell-free extracts. A pathway which accounts for the generation of adenosine triphosphate during aerobic metabolism of lactate to acetate via pyruvate and acetyl phosphate is proposed. Each of the enzyme activities involved, nicotinamide adenine dinucleotide independent lactic dehydrogenase, nicotinamide adenine dinucleotide dependent lactic dehydrogenase, pyruvate oxidase, acetate kinase and NADH oxidase were demonstrated in cell-free extracts. The production of pyruvate, acetyl phosphate and acetate was demonstrated using cell-free extracts and cofactors for the enzymes of the proposed pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...