Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Stomatal conductance, leaf water potential, soil water potential and concentration of abscisic acid (ABA) in the xylem sap were measured on maize plants growing in the field, in two treatments with contrasting soil structures. Soil compaction affected the stomatal conductance, but this effect was no longer observed if the soil water potential was increased by irrigation. Differences in leaf water potential did not account for the differences in conductance between treatments. Conversely, the relationship between stomatal conductance and concentration of ABA in the xylem sap was consistent during the experiment. The proposed interpretation is that stomatal conductance was controlled by the root water potential via an ABA message. Control of the stomatal conductance by the leaf water potential or by an effect of mechanical stress on the roots is unlikely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. It is now clear that drying of the soil does not always result in an early change in shoot water status. This may be because stomata close and leaf growth slows to reduce water loss. When this is the case, it is necessary to ask how the change in soil water status has been ‘sensed’by the shoot. The current view is that soil drying results in some type of chemical signalling between roots and shoots. The sensitivity of the response and experiments involving the manipulation of small parts of root systems suggest that the signalling involves more than a simple change in root activity in response to soil drying. In this paper, we consider the evidence for chemical signalling between roots and shoots and discuss the possible candidates for such signals. In some plants, root-sourced ABA can apparently influence shoot physiology and growth in the absence of any perturbation of shoot water relations. The ABA produced is quantitatively sufficient to account for the responses observed. Applied ABA can mimic many of the effects of soil drying on plants, including effects at the plasma membrane and on gene expression. Perhaps uniquely, ABA seems to be involved in signalling between different plant organs, and in signalling at the transmembrane and genome levels. We review the effects of ABA on leaf cells with a view to gaining some understanding of how soil drying may influence plant development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
Definitions of the variables used and the units are given in 〈link href="#t1"〉Table 1

The literature reports enormous variation between species in the extent of stomatal responses to rising CO2. This paper attempts to provide a framework within which some of this diversity can be explained. We describe the role of stomata in the short-term response of leaf gas exchange to increases in ambient CO2 concentration by developing the recently proposed stomatal model of Jarvis & Davies (1998). In this model stomatal conductance is correlated with the functioning of the photosynthetic system so that the effects of increases in CO2 on stomata are experienced through changes in the rate of photosynthesis in a simple and mechanistically transparent way. This model also allows us to consider the effects of evaporative demand and soil moisture availability on stomatal responses to photosynthesis and therefore provides a means of considering these additional sources of variation. We emphasize that the relationship between the rate of photosynthesis and the internal CO2 concentration and also drought will have important effects on the relative gains to be achieved under rising CO2.〈tabular xml:id="t1"〉1〈title type="main"〉 . Abbreviations 〈mediaResource alt="image" href="urn:x-wiley:01407791:PCE407:PCE_407_t1"/〉
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Three-month-old Cedrella odorata seedlings were exposed to a soil-drying treatment. During this period, xylem sap was periodically collected from the plant by applying pneumatic pressure to the roots. This also allowed whole-plant water status to be measured by recording the balancing pressure applied. The concentration of ABA in xylem sap (C) was related to the whole-plant transpiration rate (V) which was measured with a sap flow gauge. The analysis of these paired measurements centred on how the reciprocal of C (R) varied with respect to V. This revealed that (1) the observed increases in C could not be explained by the reductions in V alone, (2) initially, decreases in V were associated with proportional increases in the whole-plant ABA flux (M), and (3) this relationship broke down at low values of V since zero flow was associated with a finite value for C estimated to be 41 pmol ABA mmol−1 H2O. A simple static model is developed from the observations that is able to explain the data well, and the results are discussed in terms of the effects of ABA on stomatal conductance (gsw).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 5 (1982), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Experiments with isolated roots of wheat plants suggested that when water uptake rates are low, low concentrations of abscisic acid (ABA) may increase the flux of water into roots. This increase was recorded despite an ABA-stimulated reduction in the hydraulic conductance of the whole root system. Hydraulic conductances were measured under steady-state conditions. A system is described where the stomatal behaviour and water movement through roots of a single intact plant may be concurrently monitored. Experiments with intact plants confirmed that application of ABA could increase the rate of water movement into roots when uptake rates were low. No such increase was observed at high flux rates. Application of ABA to roots caused partial stomatal closure and caused conductance to oscillate around a reduced mean value. An ABA-stimulated increase in the turgor sensitivity of stomata is postulated and the significance of this effect is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 2 (1979), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Potted seedlings of four lines of maize and Sorghum of differing drought tolerance were subjected to a single soil drying cycle and were only rewatered when the plants showed the first signs of wilting. Other plants remained well-watered throughout the experimental period. As plant water potentials decreased in the unwatered plants of three of the lines investigated (Sorghum Piper and M35-1, V-4146 and maize Farz 27), endogenous levels of farnesol-like antitranspirants increased. Closure of stomata correlated well with the increase in endogenous antitranspirant. In the fourth line (Sorghum M35-1, V-4184), stomata did not close as the level of plant water stress increased, although leaf diffusion resistance of even the well-watered plants of this line was quite high. In this line, there was no consistent relationship between plant water stress and antitranspirant level or between stomatal behaviour and antitranspirant level. The involvement of farnesol-like antitranspirants in the control of stomatal behaviour in water-stressed plants is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Water and environment journal 15 (2001), S. 0 
    ISSN: 1747-6593
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Following completion of the construction of Fleetwood sewage-treatment works in 1996, the sludge (from the plant) was causing health and safety problems for the workforce and there were complaints of odour from the local community. Problems arose due to overloading of the biological-treatment units, resulting in little or no dissolved oxygen in parts of the process. There was a need to stabilise the sludge in the short term, culminating in the need for chemical conditioning, and an investigation into operational procedures to stabilise the sludge in the long term. The sludge was successfully stabilised using ferric chloride and sodium hydroxide. The long-term stability of the sludge was further improved using operational changes (such as the inclusion of step feeding and by demonstrating the effect of load removal upstream from the existing biological process) via pilot-plant studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 258 (1975), S. 192-192 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR,-I am not prepared to accept the whole of Lord Ashby's thesis, contained in his comments on the EEC pollution debate. He states, for instance, that "rabid conservationists need to be reminded sometimes that all pollution, except that from atomic weapons, is a by-product of processes which ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...