Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 8203-8209 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A molecular dynamics simulation of crystalline naphthalene is used to study nanometer scale thermal transport in solids. One molecule in a cluster of 75 is heated to a large initial temperature and then allowed to cool. Stochastic boundary conditions which preserve the time averaged volume of the cluster are used. The excess translational and librational energy of the hot molecule is lost within 1 ps. The excess vibrational energy is lost on the 100 ps time scale. Translational and librational energy propagates rapidly throughout the cluster at velocities which are comparable to the speed of sound. Despite the far slower rate of vibrational energy loss from the hot molecule, the growth of vibrational energy occurs uniformly on the other molecules in the cluster. Therefore intermolecular vibrational energy transfer occurs primarily via an indirect mechanism. Vibrational excitations are first converted into translational and librational excitations, which propagate throughout the cluster and then excite vibrations on distant molecules via multiphonon up pumping. Examination of the molecular neighbors shows that intermolecular transfer of mechanical energy can be anisotropic, since the hot molecule can only transfer energy where it contacts atoms on adjacent molecules. Energy transfer along the b- and c-crystallographic axes is more efficient than along the a axis. The most efficient energy transfer is in the direction of two of the four nearest neighbors. Transient hot spots are produced on these neighboring molecules. The implications of this anisotropic conduction for the propagation of thermal reactions, e.g., the decomposition of high explosives, are discussed briefly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4140-4151 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Optical calorimetry is used to study the dynamics of a polymer, poly-(methyl methylacrylate), (PMMA), subjected to a temperature jump which is faster than the time required for Boltzmann equilibrium. The temperature jump is produced by exciting a near-infrared dye embedded in the polymer with a 23 ps duration optical pulse. The magnitude of the temperature jump ΔT was as large as 125 degrees. To attain such a large temperature jump with good spatial uniformity requires optical heating pulses which strongly saturate the heater dye absorption. A formalism is developed to quantitatively treat optical heating with saturation. The heat capacity of the polymer, Cpol, can be determined to an accuracy of 8% using this method. The temperature jump data could not be fit by assuming the polymer heats up in a single stage. A quasitemperature model with two-stage heating, where the dye first excites polymer phonons and then the phonons excite polymer vibrations by multiphonon up pumping, gave quantitative agreement. The data at several values of ΔT were simultaneously fit using three adjustable parameters: κvc, the molecular thermal conductivity for vibrational cooling of the heater dye; κup, the molecular thermal conductivity for multiphonon up pumping; and Cpol. The value of κ vc was the same magnitude as κth, the thermal conductivity of the polymer, despite the fact that the vibrational cooling process occurs on the 1 nm length scale. The value of κup was 2 orders of magnitude smaller than κth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 4975-4983 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A large area shock target array was fabricated. By moving the array through a ps pulsed laser beam, shock waves could be reproducibly generated at a high repetition rate of up to ten shocks per second. The dynamics of shock wave propagation through various layers of the array were studied using optical nanogauges. A nanogauge is a sub micron thick layer whose optical properties are affected when the shock front passes through the layer. Since shock velocities are typically a few nm/ps, nanogauges can be used to study picosecond time scale shock dynamics. Using picosecond optical microscopy on targets with different thickness aluminum layers, it was found that the shock required 0.5 ns to form and then it propagated for a few ns with a constant velocity of 8.3 km/s (8.3 nm/ps), indicating a shock pressure of 49 GPa. The arrival time jitter of many hundreds of shocks, at an aluminum/polymer interface was found to be ±50 ps. The shock propagation through a polymer, polyester, was studied by observing the arrival of the front at a 50 nm thick nanogauge embedded in the polymer. When the shock was transmitted from the aluminum to a polymer layer, its velocity was 5.5 km/s, indicating a shock pressure of 14 GPa, in good agreement with shock impedance calculations. The shock target array is a flexible method of studying picosecond time scale dynamics of materials at and just behind the shock front. The use of different optical nanogauges, such as dye-doped polymer films, which can sense the temperature, pressure, and which indicate multiphonon up pumping, is briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 5950-5960 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Picosecond time-resolved coherent Raman spectroscopy (ps CARS) is used to study photothermal ablation, induced by 150 ps duration near-infrared optical pulses, of poly-(methyl methacrylate) (PMMA) thin films doped with a small amount of near-infrared absorbing dye. The pressure and temperature shifts of a PMMA transition at ≈808 cm−1 were calibrated in static P and T experiments. Dynamic frequency shifting of the PMMA transition is used to determine temperature and pressure in the ablating thin film, and to investigate the dynamics of fast thin-film volume expansion. When the ablation pulse intensity is varied, ps CARS measurements of T and P are shown to be consistent with the results of conventional measurements below threshold, but near and above threshold picosecond time scale data show noticeable differences. Picosecond time scale ablation involves solid-state shock waves, which are not produced by longer duration ablation pulses. A pressure jump, often several kbar, is produced when the film is heated faster than a characteristic hydrodynamic volume relaxation time τh. Pressure release occurs by shock rarefaction wave propagation. When the rarefaction wave reaches the substrate, a tensile force is exerted on the thin film, causing it to break away from the substrate. The pressure in the thin film at ablation threshold, Pabl≈0.5 GPa, is found to be generated by roughly equal contributions from shock and thermochemical polymer decomposition processes. Therefore the picosecond time scale ablation process is termed shock-assisted photothermal ablation. The value of Pabl is interpreted to be the nanosecond time scale dynamic tensile strength of the thin film under conditions of ultrafast heating. It is found to be about one order of magnitude greater than the static strength of PMMA. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 1080-1087 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new technique is described, where picosecond laser pulses generate and probe 4.2 GPa nanoshocks in polymeric and polycrystalline solids at a high repetition rate of ∼100/s. The term nanoshock refers to the short duration (a few ns) of the shock pulse and the very small shocked volume (a few ng). The nanoshock wave form is characterized by the shock front risetime, shock falltime, peak pressure, and velocity. Coherent Raman spectroscopy during nanoshock propagation in a 700-nm-thick layer of polycrystalline anthracene, called an optical nanogauge, is used to determine these quantities. A powerful method of analysis, singular value decomposition (SVD), is applied to Raman spectroscopy of shock waves for the first time. Using SVD analysis, the risetime of the nanoshock pulses is found to be less than 25 ps, and the velocity of the shock front in the nanogauge is monitored in real time. Some possible applications of nanoshock technology in the areas of shock-induced material transformation and shock-induced mechanical deformation processes, are discussed briefly. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 2274-2276 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser surface ablation of polymethylmethacrylate by ultrafast 0.532 μm pulses is studied using an imaging apparatus with 2 ps resolution. Coherent two-photon absorption rapidly heats the sample, inducing explosive thermal decomposition. Electron microscopy is used to characterize the damaged surface. Ultrafast imaging shows that surface damage is accompanied by the production of a transient optical filament. The intensity dependence shows that self-focusing results from an accumulative, rather than instantaneous, relaxation of the transient refractive index. At all intensities, there is a 20 ps delay before ablation commences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 4548-4563 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An ultrafast two-color laser spectrometer with image acquisition capability is used to study surface ablation of a transparent polymer, PMMA (polymethyl methacrylate). Surface ablation was produced by 100-ps, 0.532-μm pulses and probed by 2-ps, 0.570-μm pulses. Computer-digitized images were obtained over the time range 10−12 –100 s. The images were analyzed to obtain the time-dependent behavior of the damaged solid, and the blast wave generated at the solid-gas interface. Near the peak of the ablation pulse, self-focusing begins and produces a small-diameter filament lasting for 20 ps. The polymer irradiated by the filament then undergoes explosive thermal decomposition, ejecting particles from a conical volume into the atmosphere above the surface. This ablated matter produces a hemispherical, supersonic blast wave whose kinetic energy is one-fourth of the ablation pulse energy. The evacuated pit produced in the polymer is very hot, and the surrounding solid softens and flows, resolidifying in about 1 s. A mechanism for the ablation process involving nonlinear absorption is proposed. The steeply rising envelope of the ablation pulse simultaneously increases the absorption coefficient and decreases the absorption length, resulting in a runaway heating process with a rate of ≈1013 K/s. The polymer is overheated far beyond the normal decomposition temperature. Thermal decomposition then proceeds with a large, negative free energy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 2955-2958 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A high-power ultrafast laser spectrometer with image acquisition capability, the "picosecond microscope'' is used to study optical surface damage processes in a transparent polymer, polymethyl methacrylate. Optical damage is a fast, violent, inhomogeneous solid-state chemical reaction. We observe three distinct fast processes: creation and growth of a dark absorbing damage volume, the "damage core,'' creation and propagation of a hypersonic shock wave in the surrounding atmosphere, and creation of large amplitude acoustic waves which propagate outward from the core at the velocity of sound.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 715-717 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Multiplex picosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) is used to study the dynamics of a thin film of a polymer, poly-methyl methacrylate (PMMA), undergoing photothermal laser ablation. Time-dependent CARS spectra of a PMMA Raman transition near 810 cm−1 reveal line broadening, attributed to temperature increase, peak shift, attributed to rapid volume expansion, and the appearance of a new peak attributed to the formation of methyl methacrylate by picosecond time scale polymer thermal decomposition. This is believed to be the first direct observation of a chemical reaction product in the solid itself, during laser ablation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...