Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 24 (1985), S. 1987-1991 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The ability of human immunodeficiency virus (HIV-1) to persist and cause AIDS is dependent on its avoidance of antibody-mediated neutralization. The virus elicits abundant, envelope-directed antibodies that have little neutralization capacity. This lack of neutralization is paradoxical, given ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 29 (1990), S. 1129-1135 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Examination of binding information in the form of derivative (or finite difference) measurements is explored (1) experimentally by a thin-layer optical procedure (Dolman, D. & Gill, S. J. (1978) Anal. Biochem. 87, 127-134) and (2) theoretically by simulation in order to determine the influence of the number of data points and their standard error upon the resolvability of binding parameters in cooperative and non-cooperative systems. The data is described by the difference in optical absorbance divided by the change in the logarithm of the ligand activity and each data point is assumed to be influenced by a random error with a given variance. It is found that increasing the number of data points, which in turn effectively reduces the magnitude of the observed absorbance changes, results in an increase in the uncertainty of the resolved parameters of the system. The effect is verified by both experimental and simulation studies. Thus one is led to suggest that fewer measurements for the change of absorbance with larger magnitudes produces the most favorable situation for parameter resolution when the data is in the form of finite difference measurements.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 14 (1992), S. 351-362 
    ISSN: 0887-3585
    Keywords: thermodynamic mechanism ; subunit assembly ; binding free energy ; thermodynamic linkage ; mutant hemoglobin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (β99 Asp→xsTyr) have revealed a previously unknownquaternary structure called “quaternary Y” and suggested that the new structure may represent an important intermediate in the cooperative oxygenationpathway of normal hemoglobin.15 Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additionalβ99 mutants (Asp β99→Val, Gly, Asn, Ala, His) totest for consistency between their energetics and those of the intermediatespecies of normal hemoglobin.Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that thetetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads toa noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the α1β2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 0887-3585
    Keywords: energetics of cooperativity ; hemoglobin mutants ; subunit assembly ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Free energies of oxygen-linked subunit assembly and cooperative interaction have been determined for 34 molecular species of human hemoglobin, which differ by amino acid alterations as a result of mutation or chemical modification at specific sites. These studies required the development of extensions to our earlier methodology. In combination with previous results they comprise a data base of 60 hemoglobin species, characterized under the same conditions. The data base was analyzed in terms of the five following issues. (1) Range and sensitivity to site modifications. Deoxy tetramers showed greater average energetic response to structural modifications than the oxy species, but the ranges are similar for the two ligation forms. (2) Structural localization of cooperative free energy. Difference free energies of dimer-tetramer assembly (oxy minus deoxy) yielded ΔGc for each hemoglobin, i.e., thefree energy used for modulation of oxygen affinity over all four binding steps. A structure-energy map constructed from these results shows that the α1 β2 interface is a unique structural location of the noncovalent bonding interactions that are energetically coupled to cooperativity. (3) Relationship of cooperativity to intrinsic binding. Oxygen binding energetics for dissociated dimers of mutants strongly indicates that cooperativity and intrinsic binding are completely decoupled by tetramer to dimer dissociation. (4) Additivity, site-site coupling and adventitious perturbations. All these are exhibited by individual-site modifications of this study. Large nonadditivity may be correlated with global (quaternary) structure change.(5) Residue position vs. chemical nature. Functional response is solely dictated by structural location for a subset of the sites, but varies with side-chain type at other sites. The current data base provides a unique framework for further analyses and modeling of fundamental issues in the structural chemistry of proteins and allosteric mechanisms. © 1992 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 9 (1996), S. 65-74 
    ISSN: 0952-3499
    Keywords: analytical affinity chromatography ; biosensors ; titration calorimetry ; kinetics ; thermodynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Ligand design in biotechnology is underpinned by the control of molecular affinity. Hence, measuring binding interactions is a key component in designing ligands for such uses as therapeutics, diagnostics, biomaterials and separation science. Mass transport, kinetic and thermodynamic methods have been used for macromolecular interaction analysis but also have potential applicability as direct methods for measuring small molecular interactions. They can enhance the ligand design process by providing the ability to choose ligands based on both their kinetic and thermodynamic binding properties.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...