Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 167 (1983), S. 53-65 
    ISSN: 1432-0568
    Keywords: GAD immunohistochemistry ; Septum ; Islands of Calleja
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of gamma aminobutyric acid (GABA)-containing neurons and nerve terminals was examined in the rat septal area by using specific antibodies to the enzyme glutamic acid decarboxylase (GAD) in combination with the avidin-biotin immunoperoxidase method. Whereas only a few GAD positive neurons were present in the septum of normal rats, the septal area of rats treated with colchicine, an inhibitor of fast axonal transport, showed numerous GAD-immunoreactive neurons. These neurons were evenly filled with GAD-immunoreactive material throughout the cytoplasm of the soma and proximal parts of the dendrites. Although GAD-positive neurons were present in most parts of the septal area, their density differed greatly in the different septal subnuclei. Both the diagonal band of Broca (vertical and horizontal parts) and the lateral septum were rich in GAD positive cell bodies, whereas the medial septal nucleus and the intermediate parts of the lateral septum contained relatively few. Within the lateral septum itself a larger number of labeled cell bodies was present in its ventral subdivision. The anterior hippocampal rudiment (taenia tecta) contained numerous GAD-positive neurons, while the septal component of the island of Calleja (insula magna) was devoid of them. GAD-immunopositive neurons found within the septum ranged from small (15 μm) to large (30–35 μm). They were round or multipolar in the diagonal band, medium-sized multipolar in the lateral septum, and pyramidal, round or fusiform in the anterior hippocampal rudiment. GAD-immunoreactive nerve terminals are present in most subdivisions of the septal nuclei, with the exception of myelinated fiber tracts, and throughout all rostrocaudal levels of the septum. However, the density of the innervation is not the same within all individual nuclei. The lateral septum (dorsal and ventral parts) contained high density innervation but the diagonal band of Broca had a lower density of GAD-positive terminals. The lateral border of the islands of Calleja was rich in thick GAD-positive processes that appeared to be continuous with GAD-immunoreactive processes of the substantia inominata. The inner portion of the molecular layer adjacent to the granule cells of the anterior hippocampal rudiment contained a rich GAD-positive terminal field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0568
    Keywords: Hippocampus ; Septum ; GAD ; Immunocytochemistry ; GABA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Injections of the fluorescent dyes Fast Blue or Granular Blue into either the hippocampus (volume approximately 50 nl) or the entorhinal area (100–150 nl) resulted in labeling by retrograde axonal transport of cells in the diagonal band of Broca (dbB) and the medial septum (MS). A large number (approximately 30%) of these cells contained glutamic acid decarboxylase (GAD)-like immunoreactivity, as determined by combined retrograde fluorescent tracing and GAD-immunohistochemistry. Not all GAD positive cells in the dbB and MS were labeled by fluorochromes in a single experiment. The GAD-stained and fluorochrome-containing cells were present at all rostro-caudal levels of the septum and appeared not to belong to any single morphological class of cells. Double staining experiments showed that the GAD-positive cells did not contain acetylcholinesterase reaction product. These findings provide evidence that a significant portion of the septohippocampal projection may utilize gamma-aminobutyric acid as a neurotransmitter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-0568
    Keywords: Somatostatin ; Neurotensin ; Immunohistochemistry ; Septum ; Basal forebrain ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Antibodies to the neuropeptides somatostatin (SOM) and neurotensin were used to study the distribution of the two peptides within the septum of the rat brain. In colchicine treated rats, numerous somatostatin-positive cell bodies were found in the dorsal and ventral subdivisions of the alteral septum, along the border of the nucleus accumbens, in the ventral tip of the horizontal limb of the diagonal band of Broca as well as in the anterior hippocampal rudiment, infralimbic area and several other structures of the basal forebrain (e.g., nucleus accumbens, olfactory tubercle and substantia innominata). Cell bodies containing immunoreactivity for neurotensin were situated in the intermediate and ventral subdivisions of the lateral septum, the medial septal nucleus, the diagonal band of Broca, the rostro-medial continuation of the substantia innominata and the olfactory tubercle. In untreated rats, somatostatin positive processes formed terminal plexuses in the medial septal nucleus and along an area close to the ventricular wall of the lateral ceptal nucleus. Other septal nuclei, such as the diagonal band of Broca contained a sparse innervation by somatostatin positive fibers. In contrast, the nucleus accumbens olfactory tubercle, and the substantia innominata contained a rich innervation by somatostatin positive axons and terminals. Within these structures the density of SOM positive processes show great variations with patches of densely packed terminals separated by areas of sparser or no innervation. The neurotensin positive terminals were situated predominantly within the intermediate part of the lateral septum and the medial septal nucleus. Both of these regions contained numerous pericellular baskets of neurotensin positive terminals around septal neurons. In addition to the septal innervation, several of the basal forebrain structures were rich in neurotensin positive processes with the densest innervation found in the nucleus accumbens and substantia innominata. Like the SOM-immunoreactivity distinct islands of dense neurotensin innervation separated by less or no innervation occur throughout the basal forebrain. Taken together, these findings suggest that somatostatin and neurotensin occur in separate neuronal populations and that each may influence important physiological functions within the individual septal nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-2072
    Keywords: Raclopride ; Substituted benzamides ; Dopamine D2 receptors ; Catalepsy ; Apomorphine ; 3H-spiperone ; 3H-NPA ; Dopamine turnover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The actions on central dopamine (DA) mechanisms of raclopride, a new substituted benzamide, were studied by means of behavioural and biochemical methods in the rat. Raclopride blocked the in vitro binding of the dopamine D2 antagonist 3H-spiperone (IC50=32 nM), but not of the unselective D1 antagonist 3H-flupenthixol (IC50〉100,000 nM) in rat striatum, and failed to inhibit striatal DA-sensitive adenylate cyclase in vitro (IC50〉100,000 nM). Raclopride caused a dose-dependent increase in the DA metabolites HVA and DOPAC in the striatum and olfactory tubercle. Behavioural studies showed that raclopride discriminates between the motor behaviours induced by the DA agonist apomorphine. Thus, unlike haloperidol, raclopride blocked apomorphine-induced hyperactivity at considerably lower doses than those inhibiting oral stereotypies. Moreover, raclopride showed a high separation between the doses for blockade of apomorphine-induced hyperactivity and those inducing catalepsy in rats. Raclopride caused a dose-dependent blockade of the specific binding of 3H-spiperone and 3H-N-n-propylnorapomorphine (3H-NPA) in vivo at doses similar to those blocking the behavioural effects of apomorphine. The maximal blockade of 3H-spiperone binding in vivo was lower for raclopride than for haloperidol. Raclopride caused a greater inhibition of 3H-NPA than of 3H-spiperone in vivo binding in the striatum. It is suggested that the ability of raclopride to discriminate between different DA-mediated functions may be attributed to a preferential blockade of a subclass of functionally coupled dopamine D2 receptors in striatal as well as in extrastriatal brain regions in the rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...