Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The purpose of this study was to prepare a sintered body consisting of monophase cubic spinel type oxide, Mn1.5Co0.95Ni0.55O4, and to evaluate its electrical properties. It was found that cooling from 1400 to 1000 °C in nitrogen did not affect the preservation of the sintered rock salt type oxide formed at 1400 °C. A crack free sintered body of monophase cubic spinel may be obtained by heat treatment at 1000 °C in air, using a specimen cooled from 1400 °C at a rate of 500 °C min −1. A heat treatment time in air at 1000 °C of more than 48 h was required to convert the rock salt type structure into a perfect cubic spinel structure. The electrical conductivity, δ, of the sintered cubic spinel oxide synthesized in this work was found to be stable at 100 and 200 °C in air and at 100, 200 and 300 °C in nitrogen. The sintered spinel oxide was a p-type semiconductor, based on small polaron hopping conduction. The intrinsic hole concentration, n, was estimated to be constant, with a value of 1.6–1.8×1028m−3. The mobility, μ, increased exponentially with increasing annealing temperature in both atmospheres, suggesting that the change in δ is dependent on μ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 4 (1969), S. 1045-1050 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of particle size (0.78 ∼ 4.4 μm) on the sintering kinetics of AIN powder was investigated in the temperature range from 1600 to 2000° C and the results were analysed on the basis of vacancy diffusion models. The mechanisms of sintering are discussed. Fractional shrinkage is proportional to the nth power of soaking time with n = 0.20 for 4.4 μm and 1.5 μm powders and 0.33 for 0.78 μm powder. For the 0.78 μm powder at 1900° C, however, n decreases gradually as grain growth proceeds. The experimental activation energy for sintering is between 92 kcal/mole for 4.4 μm and 129 kcal/mole for 0.78 μm powder. Unlike this activated energy, the rate of sintering and the diffusion constant calculated from it increase drastically with decrease of particle size; the derived diffusion constant for 1.5 μm powder is 101 to 102 times larger than that of 4.4 μm powder, and for 0.78 μm powder the diffusion constant is estimated to be still higher. The particle-size dependence of parameter n and the diffusion constant seems to be caused by a variation in predominant diffusion mechanisms; namely, bulk diffusion in coarse powder and surface or grain-boundary diffusion in fine powder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 10 (1975), S. 1243-1246 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...