Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1573-5079
    Keywords: chilling temperature ; chlorophyll fluorescence ; cold acclimation ; photoinhibition ; thermoluminescence ; Spinacia oleracea L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA − reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; electron transport ; photochemical reaction (in Photosystem II) ; photoinhibition of photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A model is presented describing the relationship between chlorophyll fluorescence quenching and photoinhibition of Photosystem (PS) II-dependent electron transport in chloroplasts. The model is based on the hypothesis that excess light creates a population of inhibited PS II units in the thylakoids. Those units are supposed to posses photochemically inactive reaction centers which convert excitation energy to heat and thereby quench variable fluorescence. If predominant photoinhibition of PS IIα and cooperativity in energy transfer between inhibited and active units are presumed, a quasi-linear correlation between PS II activity and the ratio of variable to maximum fluorescence, FVFM, is obtained. However, the simulation does not result in an inherent linearity of the relationship between quantum yield of PS II and FVFM ratio. The model is used to fit experimental data on photoinhibited isolated chloroplasts. Results are discussed in view of current hypotheses of photoinhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 5 (1984), S. 139-157 
    ISSN: 1573-5079
    Keywords: Chlorophyll ; chloroplast ; fluorescence ; energy-distribution ; photochemistry, photosynthesis ; stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...