Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Amino acids 13 (1997), S. 355-367 
    ISSN: 1438-2199
    Keywords: Amino acids ; Cysteine ; Copper catalysis ; Cuprous complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The oxidation of cysteine (RSH) has been studied by using O2, ferricytochrome c (Cyt c) and nitro blue tetrazolium (NBT) as electron acceptors. The addition of 200μM CuII to a solution of 2mM cysteine, pH 7.4, produces an absorbance with a peak at 260 nm and a shoulder at 300 nm. Generation of a cuprous bis-cysteine complex (RS-CuI-SR) is responsible for this absorbance. In the absence of O2 the absorbance is stable for long time while in the presence of air it vanishes slowly only when the cysteine excess is consumed. The neocuproine assay and the EPR analysis show that the metal remains reduced in the course of the oxidation of cysteine returning to the oxidised form at the end of reaction when all RSH has been oxidised to RSSR. Addition of CuII enhances the reduction rate of Cyt c and of NBT by cysteine also under anaerobiosis indicating the occurrence of a direct reduction of the acceptor by the complex. It is concluded that the cuprous bis-cysteine complex (RS-CuI-SR) is the catalytic species involved in the oxidation of cysteine. The novel finding of the stability of the complex together with the metal remaining in the reduced form during the oxidation suggest sulfur as the electron donor in the place of the metal ion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-1327
    Keywords: Key words Ceruloplasmin ; Copper transport ; Ferrooxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The possibility that ceruloplasmin (CP) functions as a copper transferase has fueled a continuing interest in studies of the copper release process. The principal goal of the current investigation has been to identify the most labile copper centers in sheep protein. In fact, subjecting the enzyme to a slow flux of cyanide at pH 5.2 under nitrogen in the presence of ascorbate and a phenanthroline ligand produces partially demetalated forms of the protein. By standard chromatographic techniques it is possible to isolate protein with a Cu/CP ratio of ∼4 or ∼5 as opposed to the native protein which has Cu/CP=5.8. In contrast to other blue oxidases, analysis suggests that CP preferentially loses its type 1 coppers under these conditions. Thus, the spectroscopic signals from the type 1 centers exhibit a loss of intensity while the EPR signal of the type 2 copper becomes stronger. Furthermore, the Cu/CP≈4 and Cu/CP≈5 components retain about 50% of the activity of the native protein, consistent with an intact type 2/type 3 cluster. All three type 1 copper sites appear to suffer copper loss. Reconstitution with a copper(I) reagent restores the spectroscopic properties of the native protein and 90% of the original activity. The results suggest a possible functional significance for the presence of three type 1 coppers in CP. By employing a pool of redox-active but relatively labile type 1 copper centers, the enzyme can serve as a copper donor, if necessary, without completely sacrificing its oxidase activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...