Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Cancer and metastasis reviews 15 (1996), S. 149-151 
    ISSN: 1573-7233
    Keywords: angiogenesis ; VEGF ; flt-1 ; flk-1 ; KDR ; FGF ; receptor tyrosine kinase ; endothelial growth control ; tie-1 ; tie-2/tek
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1058-8388
    Keywords: Angiogenesis ; flt-1 ; flk-1 ; Mouse embryo ; Placenta ; Vasculogenesis ; VEGF ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Vascular endothelial growth factor (VEGF) is a candidate regulator of blood vessel growth during embryonic development and in tumors. To evaluate the role of VEGF receptor-1/flt-1 (VEGFR1/flt-1) in the development of the vascular system, we have characterized the murine homolog of the human flt-1 gene and have analyzed its expression pattern during mouse embryogenesis. Receptor binding studies using transfected COS cells revealed that the murine flt-1 gene encodes a high affinity receptor for VEGF. The apparent Kd for VEGF binding, as determined by Scatchard analysis, was 114 pM, demonstrating that VEGFR1/flt-1 has a higher affinity to VEGF than VEGF receptor-2/flk-1 (VEGFR2/flk-1). By in situ hybridization, VEGFR1/flt-1 was detected in the yolk sac mesoderm already at the early stages of vascular development, while the receptor ligand was expressed in the entire endoderm of 7.5-day mouse embryos. A comparison with VEGFR2/flk-1 showed that the two receptors shared a common expression domain in the yolk sac mesoderm, but were expressed at different sites in the ectoplacental cone. The differential expression of the two VEGF receptors persisted in the developing placenta, where VEGFR1/flt-1 mRNA was detected in the spongiotrophoblast layer, whereas VEGFR2/flk-1 transcripts were present in the labyrinthine layer which is the site of VEGF expression. In the embryo proper, VEGFR1/flt-1 mRNA was specifically localized in blood vessels and capillaries of the developing organs, closely resembling the pattern of VEGFR2/flk-1 transcript distribution. In the developing brain, the expression of VEGF receptors in the perineural capillary plexus and in capillary sprouts which have invaded the neuroectoderm correlated with endothelial cell proliferation and brain angiogenesis. The data are consistent with the hypothesis that VEGF and its receptors have an important function both in the differentiation of the endothelial lineage and in the neovascularization of developing organs, and act in a paracrine fashion. © 1995 wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 27 (1994), S. 495-506 
    ISSN: 1059-910X
    Keywords: Blood-brain barrier ; Brain microvasculature ; Endothelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The blood-brain barrier is responsible for the maintenance of the neuronal microenvironment. This is accomplished by isolation of the brain from the blood by the tight junctions that join endothelial cells in cerebral microvessels, and by selective transport and metabolism of substances from blood or brain by the endothelial cells. This review describes the growth and maturation of the brain vasculature, and the development of the special properties of the endothelia at the blood-brain interface. Evidence suggests that the development of the unique properties of the brain microvasculature is a consequence of tissue-specific interactions between endothelial cells of extraneural origin and developing brain cells. The cellular and molecular mechanisms that control these processes are as yet unknown but this review will include experimental studies which have used in vivo and in vitro systems to investigate what factors may be involved, and some pathological conditions in which abnormal barrier development is thought to be an important aspect of the disease process. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 237 (1993), S. 49-57 
    ISSN: 0003-276X
    Keywords: Vasculogenesis ; Angiogenesis ; Fibroblast growth factor ; Avian embryo ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In cultures of dissociated quail epiblast the basic constituents of the vascular system, blood cells and endothelial cells can be induced by basic fibroblast growth factor (Flamme and Risau, Development, 116:435-439, 1992). As we show here, in those cultures three types of vascular plexus differentiate spontaneously under different culture conditions: At the 3rd day a vascular plexus appears in situ closely resembling the vascular plexus of the quail area opaca vasculosa (vasculogenesis). Vascular sprouts are formed, extending long filopodia at their tips. Such filopodia are shown to build the first intervascular bridges in the growing vascular plexus of the area vasculosa at embryonic day 3. Connections of filopodia turn out to be precursors of new capillaries interconnecting pre-existing blood vessels (angiogenesis). Two further types of in vitro capillary plexus differentiate in long term endothelial cell cultures derived from induced angioblasts. Whereas one closely resembles so-called angiogenesis in vitro, the third type comprises mainly multinucleated giant endothelial cells lining loop like capillaries and represents a differentiation of aging endothelial cell culture. Thus, the present in vitro model is an approach to the sequence of angioblast induction, vasculogenesis, and angiogenesis. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...