Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 3057-3065 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of ambient density fluctuations on Langmuir wave collapse and strong Langmuir turbulence is investigated. Hamiltonian analysis of the collapse threshold implies that fluctuations with scales near those of nucleating wave packets can disrupt them before they can accumulate enough energy to collapse, provided the ambient fluctuation level is greater than that generated ponderomotively by the Langmuir waves. If packet disruption is effective, Langmuir energy cannot be dissipated via wave collapse and burnout, but must be scattered off density fluctuations directly to high wave numbers, as predicted by previous analyses. Numerical simulations of strong Langmuir turbulence confirm these predictions, with sudden transitions occurring from a strong-turbulence regime to one dominated by scattering or one with relatively rare wave collapses as a result of disruption of nascent wave packets. A corresponding sudden drop in Langmuir energy density is observed. Simulations of individual wave packets near the threshold for collapse show that such packets are easily disrupted by fluctuations with wavelengths near their linear scale, and confirm previous analytic disruption criteria. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 498-510 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A Fokker–Planck theory is developed to describe the diffusion in momentum space of a beam of relativistic electrons due to multiple transit-time interactions with an ensemble of coherent Langmuir wave packets. The theory incorporates two ingredients: a perturbed-orbit calculation of the momentum change of a test particle during a single transit-time interaction, and an ensemble average of the resulting Fokker–Planck coefficients based on the statistical properties of strong Langmuir turbulence. An approximate analytic solution of the Fokker–Planck equation is obtained for the case of a strongly collimated beam, and is used to interpret measurements of energy and pitch-angle scattering in relativistic-electron-beam (REB) experiments. Fokker–Planck coefficients are also calculated for a weakly collimated beam. It is shown that the theory correctly predicts the amount of energy scattering in REB experiments, but underestimates the pitch-angle scattering regardless of the distribution of wave packet orientations and the degree of collimation of the beam. This discrepancy may be a product of the approximate wave-packet structure assumed in the analysis, or of systematic errors in the experimental data; alternatively, it may imply that a non-transit-time process is responsible for part of the pitch-angle scattering observed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 192-201 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 149-159 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1263-1279 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transit-time power dissipated locally within a coherent wave packet in the presence of ambient and induced magnetic fields is calculated analytically as a function of position via a perturbed-orbit approach, generalizing earlier results for unmagnetized interactions. The theory is used to investigate local damping in a nonlinearly-collapsing lower-hybrid (LH) wave packet, and hence to estimate the arrest scale of LH wave collapse in a thermal electron-ion plasma. It is shown that either electrons or ions can dominate damping, depending on the strength of the magnetic field and the electron and ion temperatures. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 1466-1479 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Evolution of waves subject to a randomly varying growth rate is considered and the statistical properties of the waves are calculated in terms of the mean, variance, and correlation time of the growth rate. This enables stochastic growth to be studied without needing full knowledge of the microphysics. However, where the microphysics is understood, this approach also allows it to be easily incorporated into studies of larger-scale phenomena involving stochastic growth. Stochastic differential equations and Fokker–Planck equations are obtained, which describe the wave evolution in the presence of a variety of linear and nonlinear processes and boundary conditions, and it is shown that these phenomena can be diagnosed observationally through their effects on the statistical distribution of the wave field strengths. The results are particularly useful for waves with small dispersion, where they explain the strong wave clumping often observed in nature and emphasize the role of marginal stability in setting the level about which fluctuations occur and in determining their magnitude. Application to type III solar radio bursts illustrates many of the main results and verifies and generalizes earlier conclusions reached using a less rigorous approach. In particular, a new condition for marginally stable propagation of type III solar electron beams is found. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 3799-3807 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The three-wave decay of a Langmuir wave into an ion-sound wave and an electromagnetic wave close to the plasma frequency is analyzed. Realistic approximations to the spectra for the Langmuir and ion-sound waves are used to enable analytic calculation of the resulting spectrum of transverse electromagnetic waves in terms of a single well-behaved integral. This integral is approximated analytically and evaluated numerically and the results are compared with each other and with previous estimates. Applications of the results to type III solar radio bursts and laboratory plasmas are also discussed and it is found that the present analytic work is relevant to emission by fast beams in both contexts, provided the plasma temperature is not too high. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1279-1287 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The quadratic response tensor provides a complete description of second-order wave processes in a nonlinear medium. The first exact expression is derived for the quadratic response tensor of a warm collisionless plasma, whose particles have a nonrelativistic Maxwellian velocity distribution. The exact expression is written in terms of a set of generalized plasma dispersion functions which satisfy simple symmetry properties and recursion relations and which can be expressed in terms of the standard nonrelativistic plasma dispersion function. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 2751-2763 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The recently developed perturbation theory of transit-time interactions between particles and coherent wave packets in magnetized plasmas is applied to particular field structures. Limits of validity are determined by comparison with test-particle simulations, showing that the theory is accurate everywhere except near certain well-determined resonances, for wave fields exceeding a characteristic threshold, and for particles below a particular velocity. The properties of transit-time interactions in magnetized plasmas are investigated in detail to determine their dependence on the fields and parameters of the particle motion. Resonant particle scattering is found to occur at low particle velocities when the frequency of the coherent wave packet is an integer multiple of the gyrofrequency. Two different types of resonant transit-time dissipation are also observed: one arises from transient cyclotron acceleration in the localized wave packet, the other from beating between the gyration of the particles and the oscillation of the wave packet field. Both effects involve an interplay between the field geometry and resonant oscillations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 3524-3532 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Steadily driven, undriven, and stochastically driven three-wave decay processes involving groups of random-phase waves are investigated analytically and numerically. Steadily driven systems in which one product wave is suppressed exhibit neutrally stable Lotka–Volterra cycles, as for the true two-component case, whereas three-component systems are stable below a critical driver strength and unstable beyond that point. Initially unstable, but undriven, systems produce bursts of product waves, after which the parent waves fall to a final level that is an exponentially decreasing function of their initial level. Three-component systems where the product waves have near-equal dissipation rates are an exception to the latter behavior; in such systems the final parent-wave level is almost independent of the initial one. Stochastic driving gives rise to bursts of product waves in a cycle of fluctuating period, whereas a low-level noise source tends to stabilize the system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...