Bibliothek

Ihre Suchhistorie ist leer.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 972-982 
    ISSN: 0006-3592
    Schlagwort(e): membrane fouling ; microfiltration ; protein aggregation ; sulfhydryl reactions ; protein separation ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Several studies have shown that one of the critical factors governing protein fouling of microfiltration membranes is the presence of denaturedand/or aggregated protein in the bulk solutions. Experiments were performed to evaluate the role of intermolecular disulfide interchange reactionson protein aggregation and membrane fouling during stirred cell microfiltration of bovine serum albumin (BSA). The flux decline during BSA filtration was quite dramatic due to the formation of a protein deposit thatfully covered the membrane pores. This flux decline could be completely eliminated by capping the free sulfhydryl group present on the BSA with eithera carboxymethyl or cysteinyl group, demonstrating the critical importance of this free thiol in the intermolecular aggregation reactions and, in turn, protein fouling. BSA aggregation during storage could be reduced by the addition of metal chelators (EDTA and citrate) or dithiothreitol, orby storage at lower pH (7.0) these solutions all had a significantly lower rate of fouling upon subsequent filtration. This behavior is completely consistent with the known chemistry of the thiol-disulfide interchange reaction, demonstrating that an understanding of these intermolecular (aggregation) reactions can provide a rational framework for the analysis and control of protein fouling in these membrane systems. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 91-100 
    ISSN: 0006-3592
    Schlagwort(e): microfiltration ; membrane ; protein ; fouling ; filtration ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Recent studies of protein fouling have provided considerable insight into both the underlying fouling mechanisms and the mathematical description of the flux decline. However, most of the data have been obtained with a single model protein, making it difficult to generalize the results to commercially relevant process streams. Experiments were thus performed using a range of proteins with different physicochemical characteristics to determine the relationship between the protein structure and fouling behavior. Fouling in these systems occurred by two distinct mechanisms: deposition of large protein aggregates and chemical attachment of native proteins to the growing deposit. The chemical attachment generally occurred via the formation of intermolecular disulfide linkages involving a free sulfhydryl group in the native protein. Proteins without a free sulfhydryl group were typically unable to form these intermolecular linkages. The quasi-steady flux for the different proteins was proportional to the square of the protein surface charge density, consistent with a model in which protein deposition occurs when the drag force on the proteins associated with the convective filtrate flow is sufficient to overcome electrostatic repulsive interactions. These results clearly demonstrate the importance of the protein structure, charge, and reactivity in determining the rate and extent of protein fouling during microfiltration. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 91-100, 1997.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...