Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Sustained stabilization of the n=1 kink mode by plasma rotation at beta approaching twice the stability limit calculated without a wall has been achieved in DIII-D by a combination of error field reduction and sufficient rotation drive. Previous experiments have transiently exceeded the no-wall beta limit. However, demonstration of sustained rotational stabilization has remained elusive because the rotation has been found to decay whenever the plasma is wall stabilized. Recent theory [Boozer, Phys. Rev. Lett. 86, 5059 (2001)] predicts a resonant response to error fields in a plasma approaching marginal stability to a low-n kink mode. Enhancement of magnetic nonaxisymmetry in the plasma leads to strong damping of the toroidal rotation, precisely in the high-beta regime where it is needed for stabilization. This resonant response, or "error field amplification" is demonstrated in DIII-D experiments: applied n=1 radial fields cause enhanced plasma response and strong rotation damping at beta above the no wall limit but have little effect at lower beta. The discovery of an error field amplification has led to sustained operation above the no-wall limit through improved magnetic field symmetrization using an external coil set. The required symmetrization is determined both by optimizing the external currents with respect to the plasma rotation and by use of feedback to detect and minimize the plasma response to nonaxisymmetric fields as beta increases. Ideal stability analysis and rotation braking experiments at different beta values show that beta is maintained 50% higher than the no wall stability limit for durations greater than 1 s, and approaches beta twice the no-wall limit in several cases, with steady-state rotation levels. The results suggest that improved magnetic-field symmetry could allow plasmas to be maintained well above no-wall beta limit for as long as sufficient torque is provided. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A proof of principle magnetic feedback stabilization experiment has been carried out to suppress the resistive wall mode (RWM), a branch of the ideal magnetohydrodynamic (MHD) kink mode under the influence of a stabilizing resistive wall, on the DIII-D tokamak device [Plasma Phys. Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159; Phys. Plasmas 1, 1415 (1994)]. The RWM was successfully suppressed and the high beta duration above the no-wall limit was extended to more than 50 times the resistive wall flux diffusion time. It was observed that the mode structure was well preserved during the time of the feedback application. Several lumped parameter formulations were used to study the feedback process. The observed feedback characteristics are in good qualitative agreement with the analysis. These results provide encouragement to future efforts towards optimizing the RWM feedback methodology in parallel to what has been successfully developed for the n=0 vertical positional control. Newly developed MHD codes have been extremely useful in guiding the experiments and in providing possible paths for the next step. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: External kink instabilities are suppressed in a tokamak experiment by either (1) energizing a distributed array of independently controlled active feedback coils mounted outside a segmented resistive wall or (2) inserting a second segmented wall having much higher electrical conductivity. When the active feedback coils are off and the highly conducting wall is withdrawn, kink instabilities excited by plasma current gradients grow at a rate comparable to the magnetic diffusion rate of the resistive wall. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1855-1863 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Closed and open loop control techniques were applied to growing m/n=2/1 rotating islands in wall-stabilized plasmas in the High Beta Tokamak-Extended Pulse (HBT-EP) [J. Fusion Energy 12, 303 (1993)]. HBT-EP combines an adjustable, segmented conducting wall (which slows the growth or stabilizes ideal external kinks) with a number of small (6° wide toroidally) driven saddle coils located between the gaps of the conducting wall. Two-phase driven magnetic island rotation control from 5 to 15 kHz has been demonstrated powered by two 10 MW linear amplifiers. The phase instability has been observed and is well modeled by the single-helicity predictions of nonlinear Rutherford island dynamics for 2/1 tearing modes including important effects of ion inertia and finite Larmor radius, which appear as a damping term in the model equations. The closed loop response of active feedback control of the 2/1 mode at moderate gain was observed to be in good agreement with the theory. Suppression of the 2/1 island growth has been demonstrated using an asynchronous frequency modulation drive which maintains the inertial flow damping of the island by application of rotating control fields with frequencies alternating above and below the natural mode frequency. This frequency modulation control technique was also able to prevent disruptions normally observed to follow giant sawtooth crashes in the plasma core. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The High Beta Tokamak-Extended Pulse (HBT-EP) experiment [J. Fusion Energy 12, 303 (1993)] combines an internal, movable conducting wall with a high-power, modular saddle coil system to provide passive and active control of long wavelength magnetohydrodynamic (MHD) instabilities. Systematic adjustment of the radial position, b, of the conducting wall elements in relation to the surface of the plasma (minor radius a) resulted in the suppression of β-limiting disruptions for discharges in which b/a〈1.2 and a positive plasma current ramp was maintained. Conducting wall stabilization of kink instabilities was observed in discharges with strong current ramps and in plasmas with β values near the Troyon stability boundary. The frequency of slowly growing modes that persisted in wall-stabilized discharges was controlled by applying oscillating m=2, n=1 resonant magnetic perturbations. A compact, single-phase saddle coil system permitted modulation of the rotation velocity of internal m/n=2/1 instabilities by a factor of 2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The confinement and the stability properties of the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high-performance discharges are evaluated in terms of rotational and magnetic shear, with an emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped-electron-ηi mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the ηi mode suggests that the large core E×B flow shear can stabilize this mode and broaden the region of reduced core transport. Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low βN≤2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges, which has a broad region of weak or slightly negative magnetic shear (WNS), is described. The WNS discharges have broader pressure profiles and higher β values than the NCS discharges, together with high confinement and high fusion reactivity. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 4427-4431 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A compact ion beam source has been constructed for use in the Columbia Linear Machine for feedback control of plasma instabilities. This source has been used in a feedback configuration to stabilize the collisionless trapped particle instability [Phys. Rev. Lett. 67, 204 (1991)]. The source was based on an E×B hot cathode, magnetron-type design. It utilized the background magnetic field and a radial discharge voltage to obtain the azimuthal E×B drifts. The pressure inside the discharge chamber was maintained in the mTorr range via differential pumping. The source had a stable operating window in gas pressure of over 50% about the chosen operating parameters. Typical source plasma parameters were a plasma potential of 100 V, an electron temperature of 10 eV, and a plasma density of 109–1010 cm−3. The power dissipated was around 30 W. The ion beam energy was typically 100 eV with an energy spread of 20 eV and it could be modulated 100%. In addition, external control of the ion beam energy was provided via the anode bias.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A general circuit formulation of resistive wall mode (RWM) feedback stabilization developed by Boozer [Phys. Plasmas 5, 3350 (1998)] has been used as the basis for the VALEN computer code that calculates the performance of an active control system in arbitrary geometry. The code uses a finite element representation of a thin shell structure in an integral formulation to model arbitrary conducting walls. This is combined with a circuit representation of stable and unstable plasma modes. Benchmark comparisons of VALEN results with large aspect ratio analytic model of the current driven kink mode are in very good agreement. VALEN also models arbitrary sensors, control coils, and the feedback logic connecting these sensors and control coils to provide a complete simulation capability for feedback control of plasma instabilities. VALEN modeling is in good agreement with experimental results on DIII-D [Garofalo et al., Nucl. Fusion 40, 1491 (2000)] and HBT-EP [Cates et al., Phys. Plasmas 7, 3133 (2000)]. VALEN feedback simulations have also been used to evaluate and optimize the sensor/coil configurations for present and planned RWM experiments on DIII-D. These studies have shown a clear advantage for the use of local poloidal field sensors driving a "mode control" feedback logic control loop and configurations which minimize the control coil coupling to the stabilizing resistive wall. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One promising approach to maintaining stability of high beta tokamak plasmas is the use of a conducting wall near the plasma to stabilize low-n ideal magnetohydrodynamic instabilities. However, with a resistive wall, either plasma rotation or active feedback control is required to stabilize the more slowly growing resistive wall modes (RWMs). Previous experiments have demonstrated that plasmas with a nearby conducting wall can remain stable to the n=1 ideal external kink above the beta limit predicted with the wall at infinity. Recently, extension of the wall stabilized lifetime τL to more than 30 times the resistive wall time constant τw and detailed, reproducible observation of the n=1 RWM have been possible in DIII-D [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159] plasmas above the no-wall beta limit. The DIII-D measurements confirm characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q=3 surface decreases below a critical frequency of 1–7 kHz (∼1% of the toroidal Alfvén frequency). The measured mode growth times of 2–8 ms agree with measurements and numerical calculations of the dominant DIII-D vessel eigenmode time constant τw. From its onset, the RWM has little or no toroidal rotation (ωmode≤τw−1(very-much-less-than)ωplasma), and rapidly reduces the plasma rotation to zero. These slowly growing RWMs can in principle be destabilized using external coils controlled by a feedback loop. In this paper, the encouraging results from the first open loop experimental tests of active control of the RWM, conducted in DIII-D, are reported. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have been produced by combining the benefits of a hollow or weakly sheared central current profile [Phys. Plasmas 3, 1983 (1996)] with a high confinement (H mode) edge. In these discharges, low-power neutral beam injection heats the electrons during the initial current ramp, and "freezes in" a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L mode) to high (H mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high-performance phase is terminated nondisruptively at much higher βT (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang–Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E×B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium–tritium (DT) fuel mixture indicates that such plasmas could produce a DT fusion gain QDT=0.32. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...