Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: backbone assignment ; secondary structure ; transhydrogenase NADP(H)-binding domain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: transhydrogenase ; NAD binding ; prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A three-dimensional structure of the NAD site of Escerichia coli transhydrogenase has been predicted. The model is based on analysis of conserved residues among the transhydrogenases from five different sources, homologies with enzymes using NAD as cofactors or substrates, hydrophilicity profiles, and secondary structure predictions. The present model supports the hypothesis that there is one binding site, located relatively close to the N-terminus of the α-subunit. The proposed structure spans residues α145 to α287, and it includes five β-strands and five α-helices oriented in a typical open twisted α/β conformation. The amino acid sequence following the GXGXXG dinucleotide binding consensus sequence (residues α172 to α177) correlates exactly to a typical fingerprint region for ADP binding βαβ folds in dinucleotide binding enzymes. In the model, aspartic acid α195 forms hydrogen bonds to one or both hydroxyl groups on the adenosine ribose sugar moiety. Threonine α196 and alanine α256, located at the end of βB and βD, respectively, create a hydrophobic sandwich with the adenine part of NAD buried inside. The nicotinamide part is located in a hydrophobic cleft between αA and βE. Mutagenesis work has been carried out in order to test the predicted model and to determine whether residues within this domain are important for proton pumping directly. All data support the predicted structure, and no residue crucial for proton pumping Was detected. Since no three-dimensional structure of transhydrogenase has been solved, a well based tertiary structure prediction is of great value for further experimental design in trying to elucidate the mechanism of the energy-linked proton pump. © 1995 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...