Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0851
    Keywords: Key words Interleukin-2 ; Antitumor antibody ; Targetted immunotherapy ; Ganglioside
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The fusion protein formed from ch14.18 and interleukin-2 (ch14.18–IL-2), shown to exhibit antitumor efficacy in mouse models, consists of IL-2 genetically linked to each heavy chain of the ch14.18 chimeric anti-GD2 monoclonal antibody. The purpose of this study was to determine the pharmacokinetics of ch14.18–IL-2 in mice and assess its stability in murine serum. Following i.v. injection, the fusion protein was found to have a terminal half-life of 4.1 h. Detection of IL-2 following injection of the ch14.18–IL-2 fusion protein showed a similar half-life, indicating that the fusion protein prolongs the circulatory half-life of IL-2. Detection of human IgG1 following injection of ch14.18–IL-2 showed a terminal half-life of 26.9 h. These data suggested that the native fusion protein is being altered in vivo, resulting in a somewhat rapid loss of detectable IL-2, despite prolonged circulation of its immunoglobulin components. In vitro incubation of the ch14.18–IL-2 fusion protein in pooled mouse serum at 37 °C for 48 h resulted in a loss of its IL-2 component, as detected in enzyme-linked immunosorbent assay systems and in proliferation assays. Polyacrylamide gel electrophoresis and Western blot analysis of the fusion protein incubated in mouse serum at 37 °C indicated that the ch14.18–IL-2 is cleaved, resulting in a loss of the 67-kDa band (representing the IL-2 linked to the IgG1 heavy chain) and the detection of a band of more than 50 kDa, slightly heavier than the IgG1 heavy chain itself. This suggests that the fusion protein is being cleaved in vitro within the IL-2 portion of the molecule. These studies show that (1) ch14.18–IL-2 prolongs the circulatory half-life of IL-2 (compared to that of soluble IL-2) and (2) the in vivo clearance of the fusion protein occurs more rapidly than the clearance of the ch14.18 antibody itself, possibly reflecting in vivo cleavage within the IL-2 portion of the molecule, resulting in loss of IL-2 activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...