Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: ion channels ; Ca2+ transients ; lanthanum ; norepinephrine release ; neuronal cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine(3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 μm) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca2+-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 μm, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+] i ) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 μm La3+. However, 3 μm La3+ produced only a partial block of voltage clamped Ca2+ current (I Ca). Following La3+ (10 μm) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 μm) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (I A ) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...