Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 10 (1998), S. 238-245 
    ISSN: 0899-0042
    Keywords: chiral selectivity ; amino acid crystallization ; molecular recognition ; stochastic kinetics ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A study of chirally selective interaction in the stirred crystallization of glutamic acid and lysine is presented. The crystallization of S-glutamic acid is influenced by the presence of S-lysine but not R-lysine. Crystal nuclei in stirred systems are produced due to secondary nucleation. Secondary nucleation is an autocatalytic process in which a crystal produces secondary nuclei due to fluid motion, and due to crystal stirrer and crystal-crystal collisions. As a result of this autocatalysis, small fluctuations in the nucleation rates are amplified and the kinetics show a marked stochastic behavior. We investigate the stochastic behavior in detail and propose a kinetic mechanism that explains both the increase and the statistical distribution of the crystallization times of S-glutamic acid due to the presence of S-Lysine. Chirality 10:238-245, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...