Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The free calcium concentration, [Ca2+]c, in fura-2-loaded rat cerebellar granule cells was investigated by digital imaging during trains of uniform field stimuli in order to compare the ability of calcium channels in somata and neurites to respond to brief, physiologically relevant depolarizations. Very few somata responded to 20 Hz trains of 1 ms pulses, while virtually all neurites showed an extensive increase which was rapidly reversed when stimulation was terminated. In contrast, both somata and neurites responded when cells were depolarized with 50 mM KCl. The field stimuli evoked a tetrodotoxin-sensitive increase in Na+ concentration in both somata and neurites. When 4-aminopyridine, which inhibits delayed K+ currents in these cells, was present during the field stimulus both somata and neurites increased their [Ca2+]c, suggesting that prolongation of the duration of depolarization is required for somatic Ca2+ channel activation. The neurite response did not depend on the orientation of the neurite relative to the applied field. The neurite response was insensitive to nifedipine (1 μM) and ω-agatoxin-IVA (30 nM) but was uniformly inhibited by ω-conotoxin-GVIA (30% inhibition at 1 μM) and ω-conotoxin-MVIIC (44% inhibition at 5 μM). The two inhibitors were not additive. The neurite [Ca2+]c response was insensitive to the combination of ionotropic glutamate receptor antagonists. Field stimulation caused the exocytosis of the fluorescent probe FM1-43 previously loaded during KCl depolarization, suggesting that presynaptic Ca2+ channels contribute to the field-evoked neurite response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words ( ; )-BayK 8644 ; Ca2+ current ; Endothelin ; Patch-clamp ; Sarafotoxin 6c
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study, we have investigated the effect of the vasoconstrictor peptide endothelin-1 (ET-1) on voltage-sensitive Ca2+ channels in rat cerebellar granule neurones using the patch-clamp technique. Using amphotericin B perforated-patch recording of whole-cell currents, the Ca2+ channel current was inhibited by 28.4±6.4% by 400 nM ET-1, but was unaffected when experiments were repeated using the whole-cell, ruptured-patch configuration. In cell-attached patches, 400 nM ET-1 inhibited unitary L-type Ca2+ channel currents (I Ba) by 85±5%. ET-1 decreased the open probability (NP o) and the frequency of channel opening and increased the mean closed time of channels. No effects on the mean open time or the time constants for channel opening or closure were observed. L-type Ca2+ channel inhibition was dose dependent with an IC50 of 19 nM. The effect of ET-1 was prevented by the combined endothelin-A and -B receptor antagonist PD145065 (10 µM), indicating a receptor-mediated effect. The ET-A receptor antagonist BQ-123 (10 µM) prevented Ca2+ channel inhibition by ET-1, while the ET-B receptor agonist sarafotoxin 6c (500 nM) had no effect. The inhibition by ET-1 was not due to a change in the voltage of channel activation. Fura-2 Ca2+ imaging showed that no substantial rise in intracellular Ca2+ levels occurred during ET-1 application excluding a Ca2+-dependent inhibition of the channels. Thus in cultured rat cerebellar granule neurones, ET-1 inhibits L-type Ca2+ channels via activation of the ET-A receptor. Inhibition may be mediated by an as yet unidentified cytoplasmic second messenger.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...