Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of oral rehabilitation 27 (2000), S. 0 
    ISSN: 1365-2842
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The present study used the acoustic emission (AE) technique to evaluate interactions among soldering temperature, flux treatment, and the resultant ultimate tensile strength (UTS). Scanning electron microscopy (SEM) was used to examine fracture surfaces of the solder joints. Specimens were cast from removable partial denture alloy and then placed in a jig with a gap distance of 1·0 mm. A high-frequency soldering machine with an optical pyrometer was used for soldering at 1150°C and 1200°C, respectively. The flux concentrations were 67% and 75%. The soldered specimens were subjected to tensile test at a crosshead speed of 0·05 mm/min. During testing, acoustic emissions in the frequency range of 100–1200 kHz were collected, filtered, recorded, and processed by a sensing device. The results were analysed by anova and Tukey LSD test. UTS at different temperatures showed no significant difference according to either mechanical or acoustic results. But in the 1200°C group, the UTSs and AE counts showed significant differences (P〈0·05) at both flux concentrations. SEM showed that the 1200C group had better dendritic crystal structure than did the 1150°C group. In the 1200°C group specimens with 67% flux had fewer flux inclusion bodies and dendritic crystals than did specimens with 75% flux. The 75% flux subgroup produced high-amplitude (60–70 dB) acoustic signals within the elastic deformation zone, while the 67% flux subgroup produced similar signals within the plastic deformation zone, either beyond the 0·2% yield point or before fracture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of oral rehabilitation 28 (2001), S. 0 
    ISSN: 1365-2842
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Post-curing treatments have been known to improve the mechanical stability of visible light-cured composites. After individual post-curing treatment, the flexural strength (FS) of four commercial direct/indirect placement composite materials which differ greatly in composition [oligocarbonate dimethacrylate (OCDMA)-based Conquest C & B (CQT), Bisphenol-A glycidyl dimethacrylate (BisGMA)-based Charisma, urethane dimethacrylate (UDMA)-based Concept (CCT), and BisGMA/UDMA-based Dentacolor] was evaluated under water in the temperature range of 12–50 °C. A control series was tested in air at room temperature (25 ± 1 °C). Data were analysed using ANOVA and Duncan’s test. Flexural strengths overall decreased (20–40%, P 〈 0·01) with increasing temperatures except with Conquest C & B. Surprisingly, higher FS values were found in wet conditions than in dry conditions at 25 °C. UDMA-based materials much more easily undergo softening in water and by temperature change than do BisGMA- or OCDMA-based materials. Post-cured composites can be significantly affected by exposure to oral environments. Different composition determines the degree of influence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 95 (1933), S. 291-292 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 121 (1941), S. 369-370 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 109 (1937), S. 299-300 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 38 (2000), S. 253-259 
    ISSN: 1741-0444
    Keywords: Brain contusion ; Finite element ; Shear strain ; Cavitation ; Biomechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The mechanism of brain contusion has been investigated using a series of three-dimensional (3D) finite element analyses. A head injury model was used to simulate forward and backward rotation around the upper cervical vertebra. Intracranial pressure and shear stress responses were calculated and compared. The results obtained with this model support the predictions of cavitation theory that a pressure gradient develops in the brain during indirect impact. Contrecoup pressure-time histories in the parasagittal plane demonstrated that an indirect impact induced a smaller intracranial pressure (−53.7 kPa for backward rotation, and −65.5 kPa for forward rotation) than that caused by a direct impact. In addition, negative pressures induced by indirect impact to the head were not high enough to form cavitation bubbles, which can damage the brain tissue. Simulations predicted that a decrease in skull deformation had a large effect in reducing the intracranial pressure. However, the areas of high shear stress concentration were consistent with those of clinical observations. The findings of this study suggest that shear strain theory appears to better account for the clinical findings in head injury when the head is subjected to an indirect impact.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 159-171 
    ISSN: 0730-2312
    Keywords: breast cancer ; droloxifene ; estrogen replacement therapy ; apoptosis ; osteoclasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The incidence of postmenopausal osteoporosis is increasing as the population ages. Even though estrogen replacement therapy has proven beneficial in reducing the number of skeletal fractures, the known risks and associated side-effects of estrogen replacement therapy make compliance poor. Recent research has focused on the development of tissue specific estrogen agonist/anatagonists such as droloxifene which can prevent estrogen deficiency-induced bone loss without causing uterine hypertrophy. Furthermore, droloxifene acts as a full estrogen antagonist on breast tissue and is being evaluated for treatment of advanced breast cancer. In this report we propose a common mechanism of action for droloxifene that underlies its estrogen agonist and antagonist effects in different tissues. Droloxifene and estrogen, which have identical effects on bone in vivo, both induced p53 expression and apoptosis in cells of in vitro rat bone marrow cultures resulting in a decrease in the number of bone-resorbing osteoclasts. Droloxifene is growth inhibitory in MCF-7 human breast cancer cells and therefore acts as an antagonist, whereas estrogen is mitogenic to these cells and acts as an agonist. Droloxifene, but not estrogen, induced p53 expression and apoptosis in MCF-7 cells. These results indicate that the induction of apoptosis by droloxifene may be the common mechanism for both its estrogen agonist effects in bone and its antagonist effects in breast tissue. J. Cell. Biochem. 65:159-171. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...