Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 442 (2006), S. 908-911 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than ∼2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 101 (1989), S. 418-425 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and $$f_{{\text{O}}_{\text{2}} } $$ conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower $$f_{{\text{O}}_{\text{2}} } $$ conditions. The dominance of H2S in the fluid at high temperatures leads to values of $$X_{{\text{H}}_{\text{2}} {\text{O}}} $$ becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when $$X_{{\text{H}}_{\text{2}} {\text{O}}} = 1$$ . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...