Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 28 (1983), S. 3289-3300 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Solid -state polymerization of poly(ethylene terephthalate) (PET) is carried out by heating the low molecular weight prepolymer at temperatures below its melting point but above its glass transition temperature. Postcondensation occurs and the condensation byproducts can be removed by applying vacuum or inert gas. Polymers obtained usually have high molecular weight, low carboxyl and acetaldehyde content, and can be used for beverage bottle or industrial yarns. Polyesters for textile purposes are manufactured by a melt process. Chemical reactions involved in the solid state polymerization are transesterification, esterification, as well as the diffusion of byproducts. Overall reaction rate was governed by the molecular weight, carboxyl content of prepolymer, crystallinity, particle size, reaction temperature, and time. Prepolymer for solid state polymerization should have intrinsic viscosity 0.4 dL/g or more, density 1.38 g/mL, and minimum dimension 3 mm or less. The reaction temperature could be 200-250°C. When textile grade PET is used as prepolymer, crystallization at 180-190°C for 1-2 h increases the density to 1.38 g/mL. Polymerization at 240-245°C for 3-5 h can raise the intrinsic viscosity to 0.72 dL/g and carboxyl content less than 20 meq/kg. Appropriate reaction conditions are subject to the properties of prepolymers and the design of reactors. Reactor used for solid state polymerization could be vacuum dryer type or stationary bed. The former is suitable for a small capacity and is run batchwise. The latter is a continuous process and is economically feasible for large -scale production.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 20 (1982), S. 2053-2061 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Previous investigators have indicated that stabilizers will block the transesterification catalyst in the preparation of PET by the DMT process. This was not the case when triphenyl phosphate (TPP) or Irganox 1010 was used as the stabilizer and manganous acetate as the catalyst. Stabilizers in this study included TPP, trimethyl phosphate (TMP), tetraethylammonium hydroxide (TEAOH), Irganox 1010, and Irganox 1222. Their effect on the properties of PET made by the TPA process was investigated. It was observed that TPP and TMP greatly reduced the carboxyl content of PET and that the others had little or no effect. All stabilizers lowered the diethylene glycol content of PET. The rate of polycondensation was slightly increased when a small amount of Irganox 1010, Irganox 1222, or TMP was added. Proper concentration of stabilizer should be chosen to obtain good stability and low diethylene glycol content. Among the five stabilizers studied TPP was the best with respect to carboxyl and diethylene glycol content and thermal stability. The concentration of TPP should be kept under 0.04% by weight of PET.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...