Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Company
    Nature biotechnology 11 (1993), S. 479-484 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Prediction of protein tertiary structure remains an unsolved problem in molecular biology, but a solution to this problem is extremely important for protein engineering and rational drug design. Recent developments in motif recognition and side chain modeling present the prospect of nearly ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 388 (1997), S. 34-34 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bryant et al. reply — The adenylyl cyclase fold is a complex three-layer arrangement of α and β structures unlike any in the Brookhaven Protein Data Bank. Two simple and widely distributed motifs, the α/β roll and the double split βαβ ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 5 (1989), S. 233-247 
    ISSN: 0887-3585
    Keywords: protein folding ; crystallographic data base ; structural analysis ; computer program system ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: PKB is a computer program system that combines a data base of three-dimensional protein structures with a series of algorithms for pattern recognition, data analysis, and graphics. By typing relatively simple commands the user may search the data base for instances of a structural motif and analyze in detail the set of individual structures that are found. The application of PKB to the study of protein folding is illustrated in three examples. The first analysis compares the conformations observed for a short sequential motif, sequences similar to the cell-attachment signal Arg-Gly-Asp. The second compares sequences observed for a conformational motif, a 16-residue βαβ unit. The third analysis considers a population of substructures containing ion-pair interaction, examining the relationship offrequency of occurrence to calculated electrostatic energy.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 6 (1989), S. 418-423 
    ISSN: 0887-3585
    Keywords: accessible area ; power law fit ; bootstrap analyses ; fractal structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The coefficients in a power low fit of accessible area versus molecular weight for high-reslution monomeric protein structures are assessed with respect to statistical accuracy using bootstrap analyses, and with respect to physical significance using model systems and the concept of roughness or fractal structure of the protein surface.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 92-112 
    ISSN: 0887-3585
    Keywords: protein folding ; residue contacts ; conformational energy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In this paper we present a new residue contact potantial derived by statistical analysis of protein crystal structures. This gives mean hydrophobic and pairwise contact energies as a function of residue type and distance interval. To test the accuracy of this potential we generate model structures by “threading” different sequences through backbone folding motifs found in the structural data base. We find that conformational energies calculated by summing contact potentials show perfect specificity in matching the correct sequences with each globular folding motif in a 161-protcin data set. They also identify correct models with the core folding motifs of heme-rythrin and immunoglobulin McPC603 V1-do- main, among millions of alternatives possible when we align subsequences with α-helices and β-strands, and allow for variation in the lengths of intervening loops. We suggest that contact potentials reflect important constraints on nonbonded interaction in native proteins, and that “threading” may be useful for structure prediction by recognition of folding motif. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 2-6 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; community-wide experiment ; CASP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 83-91 
    ISSN: 0887-3585
    Keywords: fold recognition ; protein threading ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Analysis of CASP2 protein threading results shows that the success rate of structure predictions varies widely among prediction targets. We set “critical” thresholds in fold recognition specificity and threading model accuracy at the points where “incorrect” CASP2 predictions just outnumber “correct” predictions. Using these thresholds we find that correct predictions were made for all of those targets and for only those targets where more than 50% of target residues may be superimposed on previously known structures. Three-fourths of these correct predictions were furthermore made for targets with greater than 12% residue identity in structural alignment, where characteristic sequence motifs are also present. Based on these observations we suggest that the sustained performance of threading methods is best characterized by counting the numbers of correct predictions for targets of increasing “difficulty.” We suggest that target difficulty may be assigned, once the true structure of the target is known, according to the fraction of residues superimposable onto previously known structures and the fraction of identical residues in those structural alignments. Proteins, Suppl. 1:83-91, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 9 (1991), S. 108-119 
    ISSN: 0887-3585
    Keywords: protein structure ; statistical analysis ; ion pairs ; electrostatic potential ; maximum likelihood ; maximum entropy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A statistical analysis of ion pairs in protein crystal structures shows that their abundance with respect to uncharged controls is accurately predicted by a Botlzmann-like function of electrostatic potential. It appears that the mechanisms of protein folding and/or evolution combine to produce a “thermal” distribution of local nonbonded interactions, as has been suggested by statistical-mechanical theories. Using this relationship, we develop a maximum likelihood methodology for estimation of apparent energetic parameters from the data base of known structures, and we derive electrostatic potential functions that lead to optimal agreement of observed and predicted ion-pair frequencies. These are similar to potentials of mean force derived from electrostatic theory, but departure from Coulombic behavior is less than has been suggested.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 356-369 
    ISSN: 0887-3585
    Keywords: structure prediction ; fold recognition ; protein threading ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present an analysis of 10 blind predictions prepared for a recent conference, “Critical Assessment of Techniques for Protein Structure Prediction.”1 The sequences of these proteins are not detectably similar to those of any protein in the structure database then available, but we attempted, by a threading method, to recognize similarity to known domain folds. Four of the 10 proteins, as we subsequently learned, do indeed show significant similarity to then-known structures. For 2 of these proteins the predictions were accurate, in the sense that a similar structure was at or near the top of the list of threading scores, and the threading alignment agreed well with the corresponding structural alignment. For the best predicted model mean alignment error relative to the optimal structural alignment was 2.7 residues, arising entirely from small “register shifts” of strands or helices. In the analysis we attempt to identify factors responsible for these successes and failures. Since our threading method does not use gap penalties, we may readily distinguish between errors arising from our prior definition of the “cores” of known structures and errors arising from inherent limitations in the threading potential. It would appear from the results that successful substructure recognition depends most critically on accurate definition of the “fold” of a database protein. This definition must correctly delineate substructures that are, and are not, likely to be conserved during protein evolution. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 494-514 
    ISSN: 0887-3585
    Keywords: potential of mean force ; molecular recognition ; protein interfaces ; salt bridges ; hydrophobic interaction ; protein crystallization ; contact patches ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue-residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue-residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494-514, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...