Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Root architecture can be profoundly affected by the carbon availability in the plant. We hypothesized that this effect could be mediated by the carbon status of root cells involved in elongation and branching processes. Arabidopsis thaliana plants were grown at several photosynthetic photon flux densities (PPFD) and were supplied with various sucrose concentrations in the root medium. Hexose and sucrose concentration was estimated in individual roots in the apical growing region of the primary root and of secondary roots as well as in the zone of primordia development. Local sugar concentration was high in fast-growing and in highly branched roots and robust relationships between root elongation rate or branching and hexose concentration (but not sucrose) were found that were common to all situations experienced. Moreover, these relationships accounted for the plant-to-plant variability within a treatment as well as for the variability among individual secondary roots within a plant. These results support the view that local hexose concentration integrates changes in carbon availability from several sources and acts as a signal to induce at least part of the response of the root architecture to the environment.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 24 (2001), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild-type, a full-deficient mutant and four under-producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well-watered plants; and withholding irrigation on pot-grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA-deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild-type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The effect of absorbed photosynthetic photon flux density (PPFD) on leaf expansion is a key issue for analysing the phenotypic variability between plants and for modelling feedback loops. Expansion and epidermal cell division in leaf 8 of sunflower were analysed in a series of five experiments where absorbed photosynthetic photon flux density (PPFD) was reduced either by shading or by covering part of the leaf area. These treatments were imposed at different times during leaf development. Expansion and cell division were affected by a reduction in absorbed PPFD only in the first part of leaf development, while the leaf area was less than 2% of its final value and while absolute expansion rate was slow. In contrast, it was not affected if imposed later when the leaf was visible and absolute expansion rate was at maximum. A reduction in absorbed PPFD caused the same reduction in expansion and in cell division whether it was due to a reduction in incident PPFD or to a reduction in photosynthetic leaf area, suggesting that carbon metabolism was involved. Relative expansion rate recovered to control levels when relative division rate began to decline, in all experiments and in all zones of a leaf. This was probably linked to the source–sink transition, after which the leaf had such a high priority in carbon allocation that it was largely insensitive to changes in absorbed PPFD. The final leaf area was therefore closely related to the cumulated PPFD absorbed by the plant from leaf initiation to the end of exponential cell division.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: We have investigated the way in which the radiation absorbed by leaves affects the rate of elongation of maize (Zea mays L.) roots. In five repeated growth chamber experiments, plants previously grown at a photon irradiance of 23 mol m–2 d–1 received either 7 or 34 mol m–2 d–1 from day 10 to day 20 after germination. The elongation rate of primary roots steadily decreased for 4 d after reduction in irradiance and then stabilized at 60% of that in plants at high irradiance. The elongating zone was slightly shorter after 2 d at low irradiance, and was further reduced after 8 d. The concentrations of sucrose and glucose in the elongating zone were greatly decreased after 2 d at low irradiance and the gradient of both sugars was suppressed. The longer period at low irradiance affected neither sugar content nor gradient. In the same way, cell production rate was reduced after 2 d at low irradiance and was not appreciably decreased afterwards. The root zone with cell division was shorter in plants at low irradiance, but cell division rate remained nearly constant temporally and spatially, and was unaffected by the irradiance treatment. Our results suggest that primary events after a reduction in irradiance were a change in cell flux and sugar content in the elongating zone. Change in elongation rate was slower and probably the result of a time-related developmental effect, which may be related to the change in cell production.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Stomatal conductance of individual leaves was measured in a maize field, together with leaf water potential, leaf turgor, xylem ABA concentration and leaf ABA concentration in the same leaves. Stomatal conductance showed a tight relationship with xylem ABA, but not with the current leaf water status or with the concentration of ABA in the bulk leaf. The relationship between stomatal conductance and xylem [ABA] was common for variations in xylem [ABA] linked to the decline with time of the soil water reserve, to simultaneous differences between plants grown on compacted, non-compacted and irrigated soil, and to plant-to-plant variability. Therefore, this relationship is unlikely to be fortuitous or due to synchronous variations. These results suggest that increased concentration of ABA in the xylem sap in response to stress can control the gas exchange of plants under field conditions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The ability of the root system architecture to respond to nutrient availability is a key adaptative behaviour allowing plants to cope with environmental conditions. On the basis of single time point comparisons, the response to phosphate deprivation was previously shown to involve both the primary and lateral roots of Arabidopsis. In this work, the temporal pattern of Arabidopsis root responses to phosphate starvation was investigated. Daily scanning of roots showed that changes in architecture were largely due to the alterations of time-based growth parameters, namely a decrease in the elongation rate of the primary root opposed to an increase in the elongation rate of lateral roots and a decrease in the number of initiated lateral roots. In addition, another identified response was a decrease in the proportion of lateral roots showing early growth arrest. All these changes occurred within a short period of approximately 3 d. In addition, the root morphology comparison with the auxin-resistant mutant axr4, the auxin-treatment of phosphate-starved plants and a limited transcriptome analysis supported the conclusion that auxin signalling was involved in the adaptive response of the root system architecture to phosphate deprivation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA (SABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. SABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. SABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of SABA to changes in root water potential (Ψroot) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of SABA to RWC were due to different RWC values among categories at a given Ψroot, and not to differences in the response of SABA to Ψroot.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The stomatal conductance of several anisohydric plant species, including field-grown sunflower, frequently correlates with leaf water potential (φ1), suggesting that chemical messages travelling from roots to shoots may not play an important role in stomatal control. We have performed a series of experiments in which evaporative demand, soil water status and ABA origin (endogenous or artificial) were varied in order to analyse stomatal control. Sunflower plants were subjected to a range of soil water potentials under contrasting air vapour pressure deficits (VPD, from 0.5 to 2.5 kPa) in the field, in the glasshouse or in a humid chamber. Sunflower plants were also fed through the xylem with varying concentrations of artificial ABA, in the glasshouse and in the field. Finally, detached leaves were fed directly with varying concentrations of ABA under three contrasting VPDs. A unique relationship between stomatal conductance (gs) and the concentration of ABA in the xylem sap (xylem [ABA]) was observed in all cases. In contrast, the relationship between φ1 and gs varied substantially among experiments. Its slope was positive for droughted plants and negative for ABA-fed whole plants or detached leaves, and also varied appreciably with air VPD. All observed relationships could be modelled on the basis of the assumption that φ1 had no controlling effect on gs. We conclude that stomatal control depended only on the concentration of ABA in the xylem sap, and that φ1 was controlled by water flux through the plant (itself controlled by stomatal conductance). The possibility is also raised that differences in stomatal ‘strategy’ between isohydric plants (such as maize, where daytime φ1 does not vary appreciably with soil water status) and anisohydric plants (such as sunflower) may be accounted for by the degree of influence of φ1 on stomatal control, for a given level of xylem [ABA]. We propose that statistical relationships between φ1 and gs are only observed when φ1 has no controlling action on stomatal behaviour.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The existence of relationships between intercepted photo-synthetic photon flux density (PPFD) and growth of individual organs is somewhat controversial. We have tested whether such relationships could account for the natural variability in elongation rates of taproot and secondary roots of sunflower (from 2 to 135 mm d−1), in field and laboratory conditions. Elongation of taproot and secondary roots was recorded daily through windows in the field. A range of PPFD was obtained by following day-to-day natural fluctuation for three contrasting growing periods, and by shading part of the plants under study. A parallel experiment was carried out in a growth chamber with contrasting light intensities and with a 14CO2 labelling experiment. After the two-leaf stage, i.e. when the contribution of photosynthetic carbon became appreciable in root growth, daily root elongation rate was closely linked to the PPFD intercepted from 36 to 12 h before the measurement of root elongation. Curvilinear relationships applied to plants grown in the field as well as in a growth chamber, and to shaded plants as well as to plants subjected to day-to-day changes in intercepted PPFD. For a given intercepted PPFD, the taproot elongated faster than secondary roots, and secondary roots originating near the base of the taproot elongated faster than those originating near the apex. The elongation rate of any secondary root apex was accounted for (r= 0.77) by the ratio of intercepted PPFD to the distance between the apex and the base of the taproot. No relationships between intercepted PPFD and elongation rate were observed before the two-leaf stage, when the CO2 labelling experiment suggests that carbon essentially originates from the seed. Therefore, this study suggests a role for source-sink relations in the distribution of elongation between apices and a role for carbon nutrition in day-to-day variations of root elongation rate. Precise mechanisms explaining this behaviour remain to be investigated.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...