Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: A ground truth study was performed on first year fast ice in Kongsfjorden, Svalbard, during spring 1997 and 1998. The survey included sea ice thickness monitoring as well as observation of surface albedo, attenuation of optical radiation in the ice, physical properties and texture of snow and sea ice. The average total sea ice thickness in May was about 0.9 m, including a 0.2 m thick snow layer on top. Within a few weeks in both years, the snow melted almost completely, whereas the ice thickness decreased by not more than 0.05 m. During spring, the lower part of the snow refroze into a solid layer. The sea ice became more porous. Temperatures in the sea ice increased and the measurable salinity of the sea ice decreased with time. Due to snow cover thinning and snow grain growth, maximum surface albedo decreased from 0.96 to 0.74. Texture analysis on cores showed columnar ice with large crystals (max. crystal lenght 〉 0.1 m) below a 0.11 m thick mixed surface layer of granular ice with smaller crystals. In both years, we observed sea ice algae at the bottom part of the ice. This layer has a significant effect on the radiation transmissivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 18 (1999), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: This paper performs a climatological investigation of the surface radiation budget (SRB) in Svalbard, on the basis of the Norwegian Polar Institute's radiation measurements from Ny-Ålesund (1981-1997) and the NASA/Langley Surface Radiation Budget Dataset (1983-1991). The radiation climate is related to meteorological conditions and surface properties, and compared to surface radiation fluxes measured from space. The natural variability of the short-wave and long-wave radiation fluxes in Ny-Ålesund is generally governed by the large annual variation in the incoming light with polar night and polar day conditions, the large changes of surface albedo - especially during spring - and the atmospheric circulation with frequent cyclone passages during winter with alternating periods of warm, humid maritime air from the south and cold, dry Arctic air from the north.Comparison with the satellite derived surface radiation fluxes shows that NyÅlesund is to a large extent influenced by the “ocean” climate to the west of Svalbard during the summer and autumn, but has a more “continental” radiation climate representative of the more central parts of the island during winter and spring. Ny-Ålesund is located in a fiord on the north-west coast of Svalbard, where the ocean cloud cover and the Arctic sea fog play an important role during the summer. During the winter and spring, however, the fiords are frozen and the drift ice covers a large extent of the surrounding ocean.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: For the last thirty years, the mean net balance of two glaciers, Austre Brøggerbreen and Midre Lovénbreen, has been -0.43 and -0.34 m of water equivalent (w.e.). respectively. The mean net balance of Kongsvegen, a tidewater glacier that has been measured since 1987, is 0.11 m w.e. The negative balances of the two first glaciers are driven by the increase in atmospheric temperature which occurred at the end of the Little Ice Age at the beginning of the century. The positive balance of Kongsvegen is due to its higher elevation and larger accumulation area. There is no significant trend in the net balances and no increase of the melting has been detected during the last thirty years.A correlation coefficient of R = 0.83 has been obtained between the net balance of Lovénbreen and the winter precipitation, together with the summer temperature recorded at the neighbouring station of Ny-Ålesund since 1969. With 14 years of data, the correlation coefficient between the net balance and climatic parameters does not increase consistently by introducing any radiation component, but the coefficient correlation between the summer balance of Austre Brøggerbreen and summer temperature increases from 0.68 to 0.77 when introducing global and long-wave radiation for July and August. Weather conditions and the frequency of their changes influence the balance between global and long-wave radiation and changes in albedo values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...