Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 28 (2005), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In four species of salt-tolerant eucalypts (Eucalyptus raveretiana, E. spathulata, E. sargentii and E. loxophleba), we found substantial concentrations of quercitol – a cyclitol known for its accumulation in seeds of Quercus. Quercitol was absent in old foliage of E. globulus, a species noted for greater susceptibility to salinity, and also absent in the moderately tolerant E. camaldulensis, but, relative to other species, both had higher foliar concentrations of inositol. Simple sugars and cyclitols accumulated to osmotically significant concentrations in all species. The osmotic potential of expressed sap was always less than that of the external ‘soil’ solution and increasing salinity produced predictable reductions in growth and increases in ion concentrations in foliage of saplings of four eucalypt species. The more salt-tolerant species, E. spathulata, E. loxophleba and E. sargentii, were able to maintain well-regulated leaf Na+ concentrations even at 300 mol m−3 NaCl. These more salt-tolerant species also showed an apparent increase in net selectivity for K+ over Na+ as salinity increased, irrespective of the Na+ : Ca2+ ratio of the external medium (range 25 : 1 to 75 : 1; Ca2+ always ≥ 4.0 mol m−3). By contrast, E. globulus was unable to exclude Na+ when exposed to higher NaCl concentrations (e.g. 200 and 300 mol m−3). Carbon isotope signatures of foliage reflected imposed salinity but were not strongly enough correlated with growth to support previous suggestions that isotope discrimination be a means of evaluating salt tolerance. On the other hand, patterns of sugar and cyclitol accumulation should be further explored in eucalypts as traits contributing to salt tolerance, and with potential use as markers in breeding programmes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 110 (2000), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Proteins in plant tissues have been extensively characterised by conventional methods such as liquid chromatography and polyacrylamide gel electrophoresis – methods that are tedious and time-consuming. Capillary electrophoresis is potentially a more simple and cost-effective method (with respect to time and consumables) but needs substantial development, especially for native plants which are frequently poor in protein and rich in interfering substances (oils, tannins, phenols). We report here the development of capillary electrophoresis (CE) for the separation of SDS-protein complexes (by molecular mass) and their quantification in plant tissues. In leaf extracts, two peaks dominated the electropherograms, these peaks had migration times corresponding to the small and large subunits of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) and co-migrated with added purified Rubisco. Linearity of peak area, reproducibility of migration time and peak areas for the small and large subunit were excellent, suggesting Rubisco could be quantified with a high degree of accuracy. We determined how the concentration (0.5 or 4 mM) and form of N applied (nitrate versus ammonium) affects partitioning of N to Rubisco in seedlings of Eucalyptus diversicolor. Analysis of extracts from leaves of Eucalyptus diversicolor was only possible after precipitation of proteins with trichloroacetic acid (TCA). Precipitation with TCA was highly reproducible and recovery of added Rubisco through procedures of extraction, precipitation and analysis were close to 100% for both subunits. An 8-fold difference in the concentration of N applied did not affect total N, the concentration of Rubisco or the fraction of N present as Rubisco. The similarity of total N may well reflect faster rates of growth in those plants receiving 4 mM N, and a subsequent ‘dilution’ of tissue N. The N source did not affect total N, the concentration of Rubisco or the fraction of N present as Rubisco. Despite similar Rubisco concentrations, the total concentration of soluble proteins was greater in ammonium-grown plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 408 (1983), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 115 (1998), S. 306-311 
    ISSN: 1432-1939
    Keywords: Key words Plant roots ; Hydraulic lift ; Water use ; Sap flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant roots transfer water between soil layers of different water potential thereby significantly affecting the distribution and availability of water in the soil profile. We used a modification of the heat pulse method to measure sap flow in roots of Grevillea robusta and Eucalyptus camaldulensis and demonstrated a redistribution of soil water from deeper in the profile to dry surface horizons by the root system. This phenomenon, termed “hydraulic lift” has been reported previously. However, we also demonstrated that after the surface soils were rewetted at the break of season, water was transported by roots from the surface to deeper soil horizons – the reverse of the “hydraulic lift” behaviour described for other woody species. We suggest that “hydraulic redistribution” of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...