Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1600-079X
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abe M, Reiter RJ, Orhii PB, Hara M, Poeggeler B. Inhibitory effect of melatonin on cataract formation in newborn rats: Evidence for an antioxidative role for melatonin. J. Pineal Res. 1994; 17: 94–100. ©Munksgaard 1994〈section xml:id="abs1-1"〉〈title type="main"〉AbstractWe evaluated the inhibitory effect of melatonin, a recently discovered scavenger of free radicals, on cataract formation in the newborn rat. The glutathione synthesis inhibitor, buthionine sulfoximine (BSO) (3 mmol/kg), was intraperitoneally injected into newborn rats for 3 consecutive days starting on day 2 after birth. These glutathione depleted rats develop cataracts. Melatonin (4 mg/kg) was injected intraperitoneally into half of the rats once a day beginning at day 2 after birth; the other half of the animals received solvent daily. The incidence of cataract was observed on day 16, after the eyes of the newborn animals had opened. Both reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured. Cataracts were observed in all animals (18/18) treated with BSO plus solvent. The incidence of the cataract in the animals cotreated with melatonin was only 6. 2% (1/15). Total lenticular glutathione (GSH + GSSG) levels in BSO only treated rats were reduced by 97%. The total glutathione in the lens of the BSO plus melatonin group was significantly higher (by 3%) than that of the BSO only group. The percentage of the total glutathione as GSSG for the BSO plus solvent group was higher than the control value. Cotreatment of BSO injected rats with melatonin (4 mg/kg/day) clearly reduced cataract formation proving that it is directly or indirectly protective against oxidative stress which accompanies glutathione deficiency. The inhibitory effects of melatonin on cataract formation in this study could be due to melatonin's free radical scavenging activity or due to its stimulatory effect on glutathione production.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0730-2312
    Schlagwort(e): Key words ; melatonin ; glutathione ; lipopolysaccharide ; oxidative damage ; oxygen free radicals ; antioxidant ; phenobarbital ; cytochrome P450 reductase ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The protective effect of melatonin on lipopolysaccharide (LPS)-induced oxidative damage in phenobarbital-treated rats was measured using the following parameters: changes in total glutathione (tGSH) concentration, levels of oxidized glutathione (GSSG), the activity of the antioxidant enzyme glutathione peroxidase (GSH-PX) in both brain and liver, and the content of cytochrome P450 reductase in liver. Melatonin was injected intraperitoneally (ip, 4mg/kg BW) every hour for 4 h after LPS administration; control animals received 4 injections of diluent. LPS was given (ip, 4 mg/kg) 6 h before the animals were killed. Prior to the LPS injection, animals were pretreated with phenobarbital (PB), a stimulator of cytochrome P450 reductase, at a dose 80 mg/kg BW ip for 3 consecutive days. One group of animals received LPS together with Nw-nitro-L-arginine methyl ester (L-NAME), a blocker of nitric oxide synthase (NOS) (for 4 days given in drinking water at a concentration of 50 mM). In liver, PB, in all groups, increased significantly both the concentration of tGSH and the activity of GSH-PX. When the animals were injected with LPS the levels of tGSH and GSSG were significantly higher compared with other groups while melatonin and L-NAME significantly enhanced tGSH when compared with that in the LPS-treated rats. Melatonin alone reduced GSSG levels and enhanced the activity of GSH-PX in LPS-treated animals. Additionally, LPS diminished the content of cytochrome P450 reductase with this effect being largely prevented by L-NAME administration. Melatonin did not change the content of P450 either in PB- or LPS-treated animals. In brain, melatonin and L-NAME increased both tGSH levels and the activity of GSH-PX in LPS-treated animals. The results suggest that melatonin protects against LPS-induced oxidative toxicity in PB-treated animals in both liver and brain, and the findings are consistent with previously published observations related to the antioxidant activity of the pineal hormone.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...