Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A method for HPLC determination of phycocyanin in phytoplankton samples using gelchromatography with a fluorescence detector was developed to examine the use of phycocyanin as an index of the appearance and progress of cyanobacterial blooms in highly eutrophic lake. At least two types of phycocyanin with different molecular weights, each spectroscopically different from phycoerythrin and allophycocyanin, were found in natural phytoplankton samples. Changes in phycocyanin concentrations were clearly coupled to changes in chlorophyll-a concentrations during June to October while cyanobacterial blooms were occurring. The chlorophyll-a to phycocyanin relationship was linear at chlorophyll-a concentrations of less than 250 μg L−1. The relationship between cyanobacterial carbon and phycocyanin concentration was also linear, suggesting that phycocyanin content may be a useful index of cyanobacterial biomass in highly eutrophic lakes where large cyanobacterial blooms occur.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: high altitude lake ; Himalayan lake ; trophic status ; glacier silt ; Nepal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The trophic status and water quality of Lake Tilitso (4920 m above sea level) in a high altitude region in central Nepal were surveyed in September, 1984. The lake is rather large with a maximum depth of 95 m and a surface area of 10.2 km2. The lake water was turbid due to glacier silt and the euphotic layer was only 5 m deep. The nutrient concentration was very low with total phosphorus concentration 1–6 µg l−1, and DTN concentration 0.10–0.22 mg l−1. The phytoplankton biomass and chlorophyll-a concentration were also low. Primary production was estimated to be about 12 mg C m−2 d−1. The concentrations of particulate matter and most cations and bacterial number were higher in the epilimnion than in the hypolimnion. The trophic status of this lake was estimated as ultraoligotrophic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: oligotrophic lake ; nutrient cycle ; sedimentation of particulate matter ; autochthonous matter ; sediment trap ; sinking velocity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The settling flux of seston (dry weight, DW), chlorophyll a (Chl a), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate phosphorus (PP) was measured monthly in 1981–1983 at 10 different depths in Lake Chuzenji, Japan; an oligotrophic lake with a maximum depth of 163 m. The Ti concentration in entrapped matter was used to separate the sedimentation flux into allochthonous and autochthonous components. Inflow loads of dissolved nutrients (DN: 4.5, DP: 0.48 g m-2a-1) were almost sufficient to supply the autochthonous fluxes at 30 m (PON: 2.9, PP: 0.51 g m-2a-1 ), and this flux of POC (26.6 g m-2a -1) was about one-third of primary production (84 g C M-2a-1). Sedimentation of particulate matter was the main path of losing nutrients from lake water, explaining more than 80% removal of inflow loads (TN, TP). Decomposition rates during sedimentation which were calculated from the vertical difference in the autochthonous flux agreed very closely with the results obtained by laboratory experiments of a 100-day incubation (content ratios from field observations were: POC 0.67, PON 0.65, PP 0.85; and from laboratory experiments they were: POC 0.68, PON 0.70, PP 0.94). These decomposition rates and those near the sediment interface were used to explain dissolved oxygen depletion and nitrate increase in the hypolimnion during stratification. The average sinking velocities were 1.82m d-1 for seston and 1.16 m d-1 for Chl a at 30m, they were influenced by Chl a content of seston.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...