Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To elucidate the mechanisms underlying sensorimotor integration, we investigated modulation in the primary (SI) and secondary (SII) somatosensory cortices during the preparatory period of a self-initiated finger extension. Electrical stimulation of the right median nerve was applied continuously, while the subjects performed a self-initiated finger extension and were instructed not to pay attention to the stimulation. The preparatory period was divided into five sub-periods from the onset of the electromyogram to 3000 ms before movement and the magnetoencephalogram signals following stimulation in each sub-period were averaged. Multiple source analysis indicated that the equivalent current dipoles (ECDs) were located in SI and bilateral SII. Although the ECD moment for N20m (the upward deflection peaking at around 20 ms) was not significantly changed, that for P30m (the downward deflection peaking at around 30 m) was significantly smaller in the 0- to −500-ms sub-period than the −2000- to −3000-ms sub-period. As for SII, the ECD moment for the SII ipsilateral to movement showed no significant change, while that for the contralateral SII was significantly larger in the 0- to −500-ms sub-period than the −1500- to −2000-ms or −2000- to −3000-ms sub-period. The opposite effects of movement on SI and SII cortices indicated that these cortical areas play a different role in the function of the sensorimotor integration and are affected differently by the centrifugal process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 22 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The go/nogo task is a useful paradigm for recording event-related potentials (ERPs) to investigate the neural mechanisms of response inhibition. In nogo trials, a negative deflection at around 140–300 ms (N2), which has been called the ‘nogo potential’, is elicited at the frontocentral electrodes, compared with ERPs recorded in go trials. In the present study, we investigated the generators of nogo potentials by recording ERPs and by using magnetoencephalography (MEG) simultaneously during somatosensory go/nogo tasks to elucidate the regions involved in generating nogo potentials. ERP data revealed that the amplitude of the nogo-N140 component, which peaked at about 155 ms from frontocentral electrodes, was significantly more negative than that of go-N140. MEG data revealed that a long-latency response peaking at approximately 160 ms, termed nogo-M140 and corresponding to nogo-N140, was recorded in only nogo trials. The equivalent current dipole of nogo-M140 was estimated to lie around the posterior part of the inferior frontal sulci in the prefrontal cortex. These results revealed that both nogo-N140 and nogo-M140 evoked by somatosensory go/nogo tasks were related to the neural activity generated from the prefrontal cortex. Our findings combining MEG and ERPs clarified the spatial and temporal processing related to somato-motor inhibition caused in the posterior part of the inferior frontal sulci in the prefrontal cortex in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...