Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica 131 (1998), S. 153-167 
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...