Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The extreme thermoacidophilic archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 3 and uses a variety of sugars as sole carbon and energy source. Glucose transport in this organism is mediated by a high-affinity binding protein-dependent ATP-binding cassette (ABC) transporter. Sugar-binding studies revealed the presence of four additional membrane-bound binding proteins for arabinose, cellobiose, maltose and trehalose. These glycosylated binding proteins are subunits of ABC transporters that fall into two distinct groups: (i) monosaccharide transporters that are homologous to the sugar transport family containing a single ATPase and a periplasmic-binding protein that is processed at an unusual site at its amino-terminus; (ii) di- and oligosaccharide transporters, which are homologous to the family of oligo/dipeptide transporters that contain two different ATPases, and a binding protein that is synthesized with a typical bacterial signal sequence. The latter family has not been implicated in sugar transport before. These data indicate that binding protein-dependent transport is the predominant mechanism of transport for sugars in S. solfataricus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: We review and update the work on genetic elements, e.g., viruses and plasmids (excluding IS elements and transposons) in the kingdom Crenarchaeota (Thermoproteales and Sulfolobales) and the orders Thermococcales and Thermoplasmales in the kingdom Euryachaeota of the archael domain, including unpublished data from our laboratory. The viruses of Crenarchaeota represent four novel virus families. The Fuselloviridae represented by SSV1 of S. shibatae and relatives in other Sulfolobus strains have the form of a failed spindle. The envelope is highly hydrophobic. The DNA is double-stranded and circular. Members of this group have also been found in Methanococcus and Haloarcula. The Lipothrixviridae (e.g., T TV1 to 3) have the form of flexible filaments. They have a core containing linear double-stranded DNA and DNA-binding proteins which is wrapped into a lipid membrane. The ‘Bacilloviridae’ (e.g., TTV4 and SIRV) are stiff rods lacking this membrane, but also featuring linear double-stranded DNA and DNA-binding proteins. Both virus type carry on both ends structures involved in the attachment to receptors. Both types are represented in Thermoproteus and Sulfolobus. The droplet-formed novel Sulfolobus virus SNDV represents the ‘Guttaviridae’ containing circular double-stranded DNA. Though head and tail viruses distantly resembling T phages or lambdoid phages were seen electronmicroscopically in solfataric water samples, no such virus has so far been isolated. SSV1 is temperate, TTV1 causes lysis after induction, the other viruses found so far exist in carrier states. The hosts of all but TTV1 survive virus production. We discuss the implications of the nature of these viruses for understanding virus evolution. The plasmids found so far range in size from 4.5 kb to about 40 kb. Most of them occur in high copy number, probably due to the way of their detection. Most are cryptic, pNOB8 is conjugative, the widespread pDL10 alleviates in an unknown way autotrophic growth of its host Desulfurolobus by sulfur reduction. The plasmid pTIK4 appears to encode a killer function. pNOB8 has been used as a vector for the transfer of the lac S (β-galactosidase) gene into a mutant of S. solfataricus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1433-4909
    Keywords: Key wordsSulfolobus ; Thermophile ; pNOB8 ; Conjugation ; Archaeon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complete nucleotide sequence of the archaeal conjugative plasmid, pNOB8, from the Sulfolobus isolate NOB8-H2, was determined. The plasmid is 41 229 bp in size and contains about 50 ORFs. Several direct sequence repeats are present, the largest of which is a perfect 85-bp repeat and a site of intraplasmid recombination in foreign Sulfolobus hosts. This recombination event produces a major deletion variant, pNOB8-33, which is not stably maintained. Less than 20% of the ORFs could be assigned putative functions after extensive database searches. Tandem ORFs 315 and 470, within the deleted 8-kb region, show significant sequence similarity to the protein superfamilies of ParA (whole protein) and ParB (N-terminal half), respectively, that are important for plasmid and chromosome partitioning in bacteria. A putative cis-acting element is also present that exhibits six 24-mer repeats containing palindromic sequences which are separated by 39 or 42 bp. By analogy with bacterial systems, this element may confer plasmid incompatibility and define a group of incompatible plasmids in Archaea. Although several ORFs can form putative trans-membrane or membrane-binding segments, only two ORFs show significant sequence similarity to bacterial conjugative proteins. ORF630b aligns with the TrbE protein superfamily, which contributes to mating pair formation in Bacteria, while ORF1025 aligns with the TraG protein superfamily. We infer that the conjugative mechanism for Sulfolobus differs considerably from known bacterial mechanisms. Finally, two transposases were detected; ORF413 is flanked by an imperfect 32-bp inverted repeat with a 5-bp direct repeat at the ends, and ORF406 is very similar in sequence to an insertion element identified in the Sulfolobus solfataricus P2 genome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...