Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 247 (1975), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 6 (1985), S. 131-143 
    ISSN: 0197-8462
    Keywords: microwave ; blood-brain barrier ; 1.7 GHz ; pulsed ; continuous wave ; rat ; low-power ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The permeability of the blood-brain barrier to high- and low-molecular-weight compounds has been measured as a function of continuous-wave (CW) and pulsed-microwave radiation. Adult rats, anesthetized with pentobarbital and injected intravenously with a mixture of [14C] sucrose and [3H] inulin, were exposed for 30 min at a specific absorption rate of 0.1 W/kg to 1.7-GHz CW and pulsed (0.5-μs pulse width, 1,000 pps) microwaves. After exposure, the brain was perfused and sectioned into nine regions, and the radioactivity in each region was counted. During identical exposure conditions, temperatures of rats were measured in eight of the brain regions by a thermistor probe that did not perturb the field. No change in uptake of either tracer was found in any of the eight regions as compared with those of sham-exposed animals.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 1 (1980), S. 397-404 
    ISSN: 0197-8462
    Keywords: antibody response ; microwaves ; immunology ; 9-GHz pulsed radiation ; infectivity ; mouse ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: A significant increase was observed in the circulating antibody titers of mice exposed to 9-GHz pulsed microwaves at an average power density of 10 mW/ cm2, two hours per day for five days compared with sham-irradiated animals. The mice were previously immunized with type III pneumococcal polysaccharide. Following irradiation, a portion of the immunized animals were challenged with virulent Streptococcus pneumoniae, type III. Ten days after challenge, mortality was essentially the same in the two groups, but during the ten day period, there was a noticeable increase in the survival time of the irradiated animals compared with the sham-irradiated animals, suggesting that the increased circulating antibody response afforded some degree of temporary protection to the animals.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 7 (1986), S. 295-306 
    ISSN: 0197-8462
    Keywords: mechanical vibration ; electrostrictive force ; flectric field ; brain tissue ; extremely low frequencies ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...