Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 137 (1996), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract We have examined the effects of heme or vacuole deficiency on the kinetics of induction of cell surface ferrireductase activity and expression of the FRE1 gene encoding a component of ferrireductase, in response to iron or copper deprivation in S. cerevisiae. Heme deficiency caused a small decrease in the basal expression of FRE1, but did not impair its induction by Fe or Cu limitation. Thus, the absence of ferrireductase activity and its non-inducibility in heme-less cells is not due to the absence of FRE1 expression. Vacuole deficiency led to constitutively high ferrireductase activity slightly induced by Cu limitation, and to high levels of FRE1 expression further inducible by Fe or Cu deprivation. Thus, the vacuole might be a component of the iron signalling pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; HEM13 regulation ; Heme and oxygen ; CYP1, ROX1, SSN6, TUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae HEM13 gene codes for coproporphyrinogen oxidase (CPO), an oxygen-requiring enzyme catalysing the sixth step of heme biosynthesis. Its transcription is increased 40–50-fold in response to oxygen- or heme-deficiency. We have analyzed CPO activity and HEM13 mRNA levels in a set of isogenic strains carrying single or double deletions of the CYP1 (HAP1), ROX1, SSN6, or TUPI genes. The cells were grown in the presence or absence of oxygen and under heme-deficiency (hem1Δ background). Both Rox1p and Cyp1p partially repressed HEM13 in aerobic heme-sufficient cells, probably in an independent manner. In the absence of heme, Cyp1p activated HEM13 and strongly repressed ROX1, allowing de-repression of HEM13. Cyp1p had no effect on HEM13 expression in anaerobic cells. Deletions of SSN6 or TUP1 dramatically de-repressed HEM13 in aerobic cells. A series of deletions in the HEM13 promoter identified at least four regulatory regions that are required for HEM13 regulation. Two regions, containing motifs similar to the Rox1p consensus sequences, act as repression sites under aerobic growth. The two other sites act as activation sequences required for full induction under oxygen- or heme-deficiency. Taken together, these results suggest that induction of HEM13 occurs in part through relief of repression exerted by Rox1p and Cyp1p, and in part by activation mediated partly by Cyp1p under heme-deficiency and by unknown factors under oxygen-deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 11 (1995), S. 419-424 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; HEM4 gene ; uroporphyrinogen III synthase ; heme synthesis ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have isolated a genomic DNA fragment that complements the yeast temperature-sensitive cyt mutation, causing respiratory deficiency and accumulation of porphyrins (Sugimura et al., 1966). Partial DNA sequencing of the complementing region and search for similarity in the DNA and protein databases revealed that (1) the gene had been previously isolated by complementation of the mutation ts2326 (Langgut et al., 1986; accession number X04694), and (2) it encodes a protein with 18-23% identity to uroporphyrinogen III synthases from different sources. This enzyme catalyses the fourth step in the heme biosynthetic pathway and we named its gene HEM4. A hem4Δ disruption mutation was constructed which had phenotypes identical to the cyt mutation. Biochemical analysis confirmed the absence of uroporphyrinogen III synthase activity in both hem4Δ and cyt mutant strains.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...