Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Chromosomal rearrangements are common in both clinical isolates and spontaneous mutants of Candida albicans. It appears that many of these rearrangements are caused by translocations around the major sequence repeat (MSR) that is present in all chromosomes except chromosome 3, suggesting that homologous recombination (HR) may play an important role in the survival of this organism. In order to gain information on these processes, we have cloned the homologue of RAD52, which in Saccharomyces cerevisiae is the only gene required for all HR events. CaRAD52 complemented poorly a rad52 mutant of S. cerevisiae. Two null Carad52Δ/Carad52Δ mutants were constructed by sequential deletion of both alleles and two reconstituted strains were obtained by reintegration of the gene. Characterization of these mutants indicated that HR plays an essential role in the repair of DNA lesions caused by both UV light and the radiomimetic compound methyl-methane-sulphonate (MMS), whereas the non-homologous end-joining pathway (NHEJ) is used only in the absence of Rad52p or after extensive DNA damage. Repair by HR is more efficient in exponentially growing than in stationary cells, probably because a larger number of cells are in late S or G2 phases of the cell cycle (and therefore, can use a sister chromatid as a substrate for recombinational repair), whereas stationary phase cells are mainly in G0 or G1, and only can be repaired using the chromosomal homologue. In addition, CaRad52p  is  absolutely  required  for  the  integration of linear DNA with long flanking homologous sequences. Finally, the absence of CaRad52p results in the lengthening of telomeres, even in the presence of an active telomerase, an observation not described in any other organism. This raises the possibility that both telomerase and homologous recombination may function simultaneously at C. albicans telomeres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 125 (1995), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Three exoglucanase (Exg) genes have been reported in Saccharomyces cerevisiae. Gene EXG1 encodes the major isoenzyme (Exgl). Differential glycosylation of the primary translation product throughout the secretory pathway results in the secretion of several glycoforms. The major glycoform (Exglb) contains two short carboxypeptidase Y-like oligosaccharides attached to both potential glycosylation sites present in the molecule. A minor glycoform (Exgla) arises from the former by elongation of the second oligosaccharide. The protein portion is processed in the secretory pathway by the Kex2 protease. Gene EXG2 encodes a 63 kDa polypeptide with 12 potential glycosylation sites. The predicted protein, Exgll, carries a signal peptide at the amino terminus and a glycosyl-phosphatidyl inositol anchoring motif at the carboxyl end. The latter appears responsible for the particulate nature of this isoenzyme, since its elimination results in the secretion of this activity into the culture medium. Gene SSG1 encodes a 52 kDa polypeptide which is specifically synthesized during sporulation of diploids. SSC1 expression is under control of both sexual (a1-α2 element) and nutritional control. Although homozygous ssg1 / ssg1 diploid strains are still able to complete sporulation, they exhibited a delay in the appearance of mature asci. Single or double disruption of EXG1 and EXG2 did not result in any relevant phenotype and the triple mutant behaved as ssg1 /ssg1. A Exgl-related enzyme is secreted by Candida albicans. All these four enzymes share 8 highly conserved regions in the same relative positions, indicating that they derive from a common ancestor. However, no clear function has so far been demonstrated for them.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: Exoglucanase ; N-glycosylation ; Candida ; Saccharomyces ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Exoglucanases secreted by two different strains from Candida albicans have been purified to homogeneity. The purified enzyme from each strain behaved as a non-glycosylated monomer (molecular weight 38 000) that was identical in terms of sodium dodecyl sulphate/polyacrylamide gel electrophoresis comigratin, amino acid analysis and amino terminal sequence. The amino acid composition was similar to that of the major exoglucanase from Saccharomyces cerevisiae. In addition, these two enzymes displayed a 50% homology in the first 35 amino acids of the amino terminus. Antibodies against the deglycosylated exoglucanase (treated with Endo H) from S. cerevisiae were reactive with the exoglucanase from C. albicans and vice versa. Immunoblotting proved to be a semiquantitative method to detect C. albicans antigen in culture fluids. The exoglucanase from C. albicans appears to enter the secretory pathway without undergoing N-glycosylation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 893-898 
    ISSN: 0749-503X
    Keywords: Candida albicans ; IME1 ; CDC9 ; IME2 ; ATP-dependent DNA ligase ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A DNA ligase-encoding gene (Ca CDC9) was cloned from Candida albicans by complementation of an ime-1 mutation in Saccharomyces cerevisiae. In this system, IME1 function was assayed using a S. cerevisiae strain with a ime2-promoter-lacZ gene fusion such that following transformation with a C. albicans genomic library, the presence of positive clones was indicated upon the addition of X-gal to sporulation media. Transforming fragments were subcloned in pGEM7 and sequenced. Sequence homology with several ATP-dependent DNA ligases from viruses, fission yeast, human, baker yeast and bacteria was observed. The sequence has been deposited in the EMBL data bank under the Accession Number X95001.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...