Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 41 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The permease-like amino acid sensor Ssy1p of Saccharomyces cerevisiae is required for transcriptional induction, in response to external amino acids, of several genes encoding peptide and amino acid permeases. Among them is AGP1 encoding a low-affinity, broad-specificity amino acid permease important for the utilization of amino acids as a nitrogen source. We report here data from experiments aimed at identifying components of the signalling pathway activated by Ssy1p. Overproduction of the large amino-terminal tail of Ssy1p interferes negatively with the induction of AGP1 in wild-type cells. Furthermore, overproduction of this domain can relieve growth defects of a ssy1 null strain, indicating that the N-terminal tail of Ssy1p is an important functional element of the pathway. Consistent with a role for Ssy1p in the recognition of amino acids, a mutant form of the protein with a Thr to Ile substitution in the eighth predicted transmembrane domain is competent for the induction of AGP1 by leucine but not by other amino acids. In a screen for other mutants defective in the Ssy1p pathway, we confirmed that PTR3 and SSY5 encode additional factors essential for AGP1 expression in response to multiple amino acids. Data obtained by overproducing Ptr3p and Ssy5p in ssy1Δ, ptr3Δ and ssy5Δ mutants suggest that Ptr3p acts downstream from Ssy1p and Ssy5p downstream from Ptr3p in the transduction pathway. Furthermore, two-hybrid experiments indicated that Ptr3p interacts with Ssy5p and that Ptr3p can self-associate. Finally, the Cys-6-Zn2 transcription factor Uga35p/Dal81p required for the induction of AGP1 is also essential for the expression of two other genes under Ssy1p–Ptr3p–Ssy5p control, namely BAP2 and PTR2, suggesting that the protein is yet another component of the amino acid signalling pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, two positive transcription factors of the GATA family, Gln3p and NiMp/ Gatlp, upregulate the expression of multiple nitrogen pathway genes via upstream 5-GATA-3′ sequences. Another GATA factor, Uga43p/Da180p, downregulates to varying degrees the expression of some nitrogen-regulated genes. Here, we report the functional analysis of a fourth GATA factor, Gzf 3p/Ni12p, whose gene was discovered by systematic sequencing of chromosome X. The Gzf3 protein most closely resembles Uga43p. Similar to Uga43p, Gzf3p has the properties of a negative GATA factor. While Uga43p is active specifically under nitrogen-derepression conditions, Gzf 3p exerts its negative regulatory function specifically on preferred nitrogen sources: it is involved in nitrogen repression of NiMp-dependent transcription. At least one positive GATA factor is required for the UGA43 and GZF3 genes to be expressed. The Uga43p factor negatively regulates GZF3 expression and vice versa. In addition, both Uga43p and Gzf3p moderately regulate expression of their own genes. These two proteins seem to be parts of a complex network of GATA factors which probably play a determining role in nitrogen-regulated transcription.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, the transcription factors Gln3p and Nil1p of the GATA family play a determinant role in expression of genes that are subject to nitrogen catabolite repression. Here we report the isolation of a new yeast mutant, gan1-1, exhibiting dramatically decreased NAD-linked glutamate dehydrogenase (NAD-GDH) and glutamine synthetase (GS) activities. The GAN1 gene was cloned and found to encode a 488-amino-acid polypeptide bearing no typical DNA binding domain. Gan1p is required for full expression of GLN1, GDH2 and also other nitrogen utilization genes, including GAP1, PUT4, MEP2 and GDH1. The extent to which Gan1p is required, however, varies according to the gene and to the nitrogen source available. We show that Gan1p is in fact involved in Gln3p- and Nil1p-dependent transcription. In the case of Gln3p-dependent transcription, the degree to which Gan1p is required appears to be gene specific. The contribution of Gan1p to gene expression is also influenced by the nitrogen status of the cell. We found that GAN1 is identical to ADA1, which encodes a component of the ADA/GCN5 co-activator complex. Ada1/Gan1p thus represents the first reported case of an accessory protein (a co-activator) linking the GATA-binding proteins Gln3p and Nil1p, mediating nitrogen-regulated transcription, to the basal transcription machinery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: When yeast cells growing on a poor nitrogen source are supplied with NH4+ ions, several nitrogen permeases including the general amino acid permease (Gap1p) are rapidly and completely inactivated. This report shows that inactivation by NH4+ of the Gap1 permease is accompanied by its degradation. A functional NPI1 gene product is required for both inactivation and degradation of Gap1p. Molecular analysis of the NPI1 gene showed that it is identical to RSP5. The RSP5 product is a ubiquitin—protein ligase (E3 enzyme) whose physiological function was, however, unknown. Its C-terminal region is very similar to that of other members of the E6-AP-like family of ubiquitin-protein ligases. Its N-terminal region contains a single C2 domain that may be a Ca2+-dependent phospholipid interaction motif, followed by several copies of a recently identified domain called WW(P). The Npi1/Rsp5 protein has a homologue both in humans and in mice, the latter being involved in brain development. Stress-induced degradation of the uracil permease (Fur4p), a process in which ubiquitin is probably involved, was also found to require a functional NPI1/RSP5 product. Chromosomal deletion of NPI1/RSP5 showed that this gene is essential for cell viability. In the viable np1/rsp5 strain, expression of NPI1/RSP5 is reduced as a result of insertion of a Ty1 element in its 5′ region. Our results show that the Npi1/Rsp5 ubiquitin-protein ligase participates in induced degradation of at least two permeases, Gap1p and Fur4p, and probably also other proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Ammonium uptake in the yeast Saccharomyces cerevisiae involves three membrane transporters (Mep1, -2 and -3) belonging to an evolutionarily conserved protein family that also includes the rhesus (Rh) blood group polypeptides of erythrocytes. We show here that, in the 26972c mutant defective in NH4+ transport, the Mep1 protein carrying an amino acid substitution in its cytoplasmic C-terminus trans-inhibits the closely related Mep3 protein. The same mutation introduced into Mep3 leads to loss of transport activity and this inactive form also trans-inhibits native Mep3. Inhibition of Mep3 is post-translational and can be overcome by overexpression. These results are consistent with a direct interaction between Mep proteins, as is the case for the Rh polypeptides. The soybean GmSAT1 gene, recently cloned for its ability to complement the NH4+ transport defect of strain 26972c, has been described as an NH4+ channel protein involved in the transfer of fixed nitrogen from the bacteroid to the host plant. We show here that GmSAT1 contains a sequence homologous to the DNA-binding domain of basic helix–loop–helix (bHLH) transcription factors. We also show that GmSAT1 restores NH4+ uptake in the yeast mutant by interfering with the inhibition of Mep3. Our results are not consistent with a direct role of GmSAT1 in ammonium transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 38 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Saccharomyces cerevisiae possesses three related ammonium transporters, Mep1, Mep2 and Mep3, differing in their kinetic properties and in the level and regulation of their gene expression. The three Mep proteins belong to a family conserved in bacteria, plants and animals, which also includes proteins of the rhesus blood group family. In addition to its role in scavenging extracellular ammonium, the Mep2 protein has been proposed to act as an ammonium sensor, essential to pseudohyphal differentiation in response to ammonium limitation. To pursue the biochemical study of the Mep transporters, we raised polyclonal antibodies against the C-terminal tail of each Mep protein. When electrophoresed on SDS–polyacrylamide gel, the Mep1 and Mep3 proteins migrate as expected from their predicted size, whereas the Mep2 protein migrates as a high-molecular-weight smear. Protein deglycosylation with peptide-N-glycosidase F (PNGase F) indicates that, in contrast to Mep1 and Mep3, Mep2 is an asparagine-linked glycoprotein. Site-directed mutagenesis of the four potential N-glycosylation sites of Mep2 shows that Asn-4 of the protein's N-terminal tail is the only site that binds oligosaccharides. This provides evidence for the extracytosolic location of the Mep2 N-terminus. Consistently, treatment of intact protoplasts with proteinase K leads to specific proteolysis of the N-terminal tail of Mep2. The protein's C-terminus, on the other hand, is protected against protease degradation under these conditions, but digested after protoplast permeabilization, suggesting a cytoplasmic location for this part of the protein. Mep2 glycosylation is not required for pseudohyphal differentiation in response to ammonium starvation, and its absence causes only a slight reduction in the affinity of the transporter for its substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation (gap1pgr ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The Rhesus blood-group antigens are defined by a complex association of membrane polypeptides that includes the non-glycosylated Rh proteins (RhD and RhCE) and the RHag glycoprotein, which is strictly required for cell surface expression of these antigens. RhAG and the Rh polypeptides are ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...