Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of pediatrics 159 (2000), S. S213 
    ISSN: 1432-1076
    Keywords: Key words Fatty acid oxidation defects ; Medium-chain acyl-CoA dehydrogenase deficiency ; Mutation analysis ; Short-chain acyl-CoA dehydrogenase deficiency ; Susceptibility gene variations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation: the medium-chain acyl-CoA dehydrogenase (MCAD) gene; the short-chain acyl-CoA dehydrogenase (SCAD) gene; the long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) gene and the carnitine-palmitoyl-CoA transferase II (CPT II) gene. In MCAD deficiency the analysis confirms the conventional wisdom that individuals carrying the prevalent 985A〉G mutation are at risk of developing life-threatening attacks. In SCAD/ethylmalonic aciduria, on the other hand, the presence of the prevalent susceptibility variations, 625A and 511T, in the SCAD gene seems to require additional genetic and cellular factors to be present in order to result in a phenotype. For the prevalent mutations in the LCHAD and CPT II genes further data are needed to evaluate the penetrance and risk of manifest disease when carrying these mutations. Conclusion Assessment of the prevalence of a prevalent mutation in the mutation spectrum of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid β-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion of ethylmalonic acid (EMA). To define the genetic basis of SCAD deficiency and ethylmalonic aciduria in patients, we have determined the sequence of the complete coding portion of the human SCAD gene (ACADS) and all of the intron-exon boundaries. The SCAD gene is approximately 13 kb in length and consists of 10 exons. Four polymorphic sites have previously been detected by sequencing of cDNA from fibroblasts of patients excreting elevated amounts of EMA. Three of these polymorphisms (321T/C, 990C/T, 1260G/C) are silent variants, while a 625G/A polymorphism results in an amino acid replacement and has been shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C, 990T, 1260C) constitutes an allelic variant with a frequency of 22% in the general Danish population. Using fluorescence in-situ hybridization, we confirm the localization of the human SCAD gene to the distal part of Chromosome (Chr) 12 and suggest that the SCAD gene is a single-copy gene. The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...