Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 117 (1994), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Protein phosphorylation is an important regulatory phenomenon in yeasts just as in other eukaryotic cells and controls a wide variety of cellular processes. The importance of protein phosphatases as well as protein kinases as key elements in such control is becoming increasingly clear. Over the past four years since the first yeast protein phosphatase gene was isolated, many more such genes have been described and the number of genes encoding protein phosphatase catalytic subunits in Saccharomyces cerevisiae has comfortably entered double figures. Given the genetic approaches available, yeasts offer powerful systems for addressing the cellular roles of these enzymes. This review summarises the results of genetic studies aimed at determining the functions of protein serine/threoninc phosphatases in yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; GLC7 ; protein phosphatase ; mitosis ; MET3 promoter ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Saccharomyces cerevisiae possesses a single essential gene (GLC7) encoding protein phosphatase 1 (PP1). Elevated expression of this gene from the GAL1 promoter is highly detrimental to the cell, causing a growth defect and aberrant bud morphology, which leads to cells exhibiting long, extended buds. By comparison, expression of GLC7 from the weaker MET3 promoter was without significant effect on either growth or morphology. However, repression of GLC7 expression from the MET3 promoter in cells where the MET3-GLC7 fusion was the sole source of PP1 resulted in a mitotic delay. Such cultures showed a massive decrease in the rate of proliferation in conjunction with a significant increase in the proportion of large, budded cells. 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining and anti-tubulin immunofluorescence analysis of these cells revealed that many were blocked in mitosis, with a short spindle and DAPI-stained material stretched between the mother and daughter cell within the bud neck. These results support a role for PP1 in the completion of mitosis in S. cerevisiae.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...