Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Behavioral and Neural Biology 33 (1981), S. 402-418 
    ISSN: 0163-1047
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 46 (1982), S. 383-392 
    ISSN: 1432-1106
    Keywords: Electrophysiology ; Hypothalamus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The responses of 700 single neurons in the hypothalamus to electrical stimulation of the preoptic area, limbic structures, and midbrain were studied to determine the location of neurons with multiple inputs and to identify by antidromic activation the projection areas of those neurons. Converging excitatory inputs, observed in 134 responsive hypothalamic neurons, were principally derived from the preoptic, limbic, and midbrain areas. Inputs from separate nuclei of the amygdala were noted in the response of individual hypothalamic neurons. Two classes of short latency transsynaptic responses to amygdala stimulation were defined, indicating either separate pathways from the amygdala to the medial hypothalamus or two types of fibers conducting at different velocities. Stimulation of single or multiple sites in the preoptic and limbic areas, as well as in the arcuate nucleus and medial forebrain bundle produced inhibition of hypothalamic neuronal activity. Most antidromically identified medial hypothalamic neurons projected to the preoptic area, median eminence (tuberoinfundibular neurons), or midbrain. Evidence is presented for collateral projections of tuberoinfundibular neurons to the preoptic area and reticular formation. Medial hypothalamic neurons received inputs from the preoptic area, lateral septal nucleus, amygdala, ventral hippocampus (subiculum), and fornix. These findings illustrate a pattern of reciprocal connections between the medial hypothalamus and limbic and midbrain structures. It was concluded that the hypothalamus contains a type of neuron that is equipped to perform complex integrations and to coordinate directly the behavior of neurons in a diversity of anatomical regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...