Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Central projections of mechano-and chemoreceptors on the legs and pedipalps of the wandering spider Cupiennius salei were traced by anterograde cobalt fills. The primary afferent fibres from trichobothria, tactile hairs, lyriform organs and contact chemoreceptive hairs enter the leg ganglia and pedipalpal ganglia ventrally. On their way through these ganglia there is very little arborization. The main areas of arborization are in the sensory longitudinal tracts in the suboesophageal nervous mass. The central projections of all mechano-and chemoreceptors examined show somatotopic organization. Sensilla located proximally on the legs are represented in dorsally located sensory longitudinal tracts, whereas those located on distal leg segments enter more ventral tracts. The afferent fibres of receptors of identifical modality on a specific segment of all legs and of the pedipalps overlap in the same tracts. No indication for a tonotopic arrangement of the trichobothrial afferences was found, which might have been associated with the mechanical frequency tuning of the trichobothria known from other experiments. The convergence of the projections of different types of receptors in the sensory longitudinal tracts is considered to be an anatomical basis for their functional interaction in behaviour. Both the convergence of the projections of receptors from the same segment of different legs and the somatotopy are connectivity patterns possibly associated with the orientation of the spiders towards mechanical or chemical cues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of insect behavior 11 (1998), S. 671-690 
    ISSN: 1572-8889
    Keywords: predator–prey interaction ; Liris niger (Sphecidae, Insecta) ; crickets (Gryllidae, Insecta) ; prey specificity ; prey recognition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Females of the digger wasp species Liris niger paralyzed and layed eggs on six of seven tested cricket species. L. niger females with unmanipulated antennae always rejected the cricket Gryllus bimaculatus, but those without antennal flagella paralyzed and layed eggs on it. Even L. niger females from maggots raised artificially on G. bimaculatus never paralyzed it. L. niger first orients toward a prey visually and then touches the prospective prey briefly with its antennal flagella. This contact determines about the suitability of the prey. The ability to differentiate between prey species required at least one partially unmanipulated antennal flagellum. The responsible sensilla were located on the upper surface of the antennal flagella. Chemical cues which make the cricket Acheta domesticus attractive to L. niger females could be transferred to G. bimaculatus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 217 (1993), S. 129-136 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Central projections of lyriform organs and tactile hairs on the chelicerae of the wandering spider Cupiennius salei were traced using anterograde cobalt fills. Different fibers arising from both mechanoreceptor types arborize in the cheliceral ganglia, which are part of the tritocerebrum, and in sensory longitudinal tracts in the center of the suboesophageal nerve mass together with afferent fibers arising from mechanoreceptors on the walking legs and the pedipalps. This convergence of sensory projections in the sensory longitudinal tracts might provide the anatomical basis for the coordination of the movements of different extremities during prey capture and feeding. The findings also support the hypothesis that the tritocerebrum originally was a preoral ganglion in spiders. © 1993 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Key words: Tarsal organ ; Sensilla ; Hygroreceptors ; Thermoreceptors ; Cobalt labeling ; Sensory projections ; Cupiennius salei (Chelicerata)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the “Blumenthal neuropil”) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Tarsal organ ; Sensilla ; Hygroreceptors ; Thermoreceptors ; Cobalt labeling ; Sensory projections ; Cupiennius salei (Chelicerata)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the “Blumenthal neuropil”) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...