Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Five psychrophilic Antarctic bacteria have been selected for their capacity to secrete exoenzymes into culture medium. These strains are able to grow from 0 to about 25° C. However, production of lipase fromMoraxella, α-amylase fromAlteromonas haloplanctis, β-lactamase fromPsychrobacter immobilis and protease fromBacillus is maximal at temperatures close to that of their environment (—2 to 4° C) and is strongly inhibited at higher temperatures. This thermal effect involves alterations in the secretory pathway in the upper range of temperatures, losses due to the enzyme thermal lability and in some cases to reduction in cell development. The apparent optimal activity temperature of these enzymes is between 30 and 40° C, i.e. about 20° C lower than that of their mesophilic counterparts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Five psychrophilic Antarctic bacteria have been selected for their capacity to secrete exoenzymes into culture medium. These strains are able to grow from 0 to about 25° C. However, production of lipase fromMoraxella, α-amylase fromAlteromonas haloplanctis, β-lactamase fromPsychrobacter immobilis and protease fromBacillus is maximal at temperatures close to that of their environment (—2 to 4° C) and is strongly inhibited at higher temperatures. This thermal effect involves alterations in the secretory pathway in the upper range of temperatures, losses due to the enzyme thermal lability and in some cases to reduction in cell development. The apparent optimal activity temperature of these enzymes is between 30 and 40° C, i.e. about 20° C lower than that of their mesophilic counterparts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Five psychrophilic Antarctic bacteria have been selected for their capacity to secrete exoenzymes into culture medium. These strains are able to grow from 0 to about 25° C. However, production of lipase from Moraxella, α-amylase from Alteromonas haloplanctis, β-lactamase from Psychrobacter immobilis and protease from Bacillus is maximal at temperatures close to that of their environment (–2 to 4 ° C) and is strongly inhibited at higher temperatures. This thermal effect involves alterations in the secretory pathway in the upper range of temperatures, losses due to the enzyme thermal lability and in some cases to reduction in cell development. The apparent optimal activity temperature of these enzymes is between 30 and 40° C, i.e. about 20° C lower than that of their mesophilic counterparts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...