Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 28 (1994), S. 409-421 
    ISSN: 1059-910X
    Keywords: Extracellular matrix ; Image analysis ; 3D reconstruction ; Electron microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The epiphyseal growth plate and articular cartilage matrices were preserved by slam freezing and freeze substitution to optimally retain the native organization for both cellular and matrix components. These specimens were stained and examined using conventional electron microscopic methods. The highly integrated, proteoglycan-rich matrices were examined by computer image analysis using such parameters as distribution, connectivity, orientation, and a variety of morphometric analyses. Also, different aspects of electron tomography and 3D rendering of matrix vesicles and their associated mineral deposits from epiphyseal growth plates and turkey leg tendons are presented. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Cell wall synthesis ; Freeze substitution ; Fungal hyphae ; Golgi bodies ; Secretory vesicles ; Tip growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Secretory vesicles involved in cell wall synthesis (wall vesicles) and the Golgi apparatus have been compared in conventionally fixed and freeze substituted hyphae of the oomycete fungusSaprolegnia ferax. Wall vesicles freeze substituted in various fluids range from spherical to tubular and contain an intensely staining, phosphorous rich matrix. In contrast diverse conventional fixations cause artefactual constrictions in most tubular vesicles and loss of their intensely staining contents. These data are interpreted to show the existence of an intravesicular skeletal system, with cellular regulation, to determine vesicle morphology and intravesicular synthesis of a hypothetical phosphorylated glycolipid cell wall precursor. Whilst freeze substitution gives superior preservation of wall vesicle morphology, it does not demonstrate any preferential association between wall vesicles and microtubules thus suggesting that microtubules are only indirectly involved in wall vesicle transport. Freeze substitution is superior to conventional fixation for analysis of the Golgi apparatus because it uniquely reveals both differentiation of a specific single cisterna in each Golgi body and greater differences in membrane thicknesses throughout the endomembrane system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 227 (1990), S. 223-231 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Metaphyseal blood vessels which invade the calcifying epiphyseal growth plate were examined by a variety of techniques to determine their morphology, cell division, and growth patterns as they relate to endochondral ossification. Four regions of these vessels were characterized: 1) sprout tips - the terminal ends of the capillary sprouts which impinge upon the hypertrophic chondrocytes of the growth plate; 2) region of extended calcified cartilage - those deeper vessels within the metaphysis which are surrounded by an extracellular matrix predominantly composed of extended septa of calcified cartilage; 3) region of bone deposition - further still from the epiphysis these microvessels are contained within a network of active bone deposition laid upon a scaffold of calcified cartilage; 4) region of primary vessels - at a distance of 350-500 μm from the epiphysis are dilated vessels with one or two layers of smooth muscle in their walls, which supply and drain the metaphyseal capillary plexus. The sprout tips are continuous blind-ended vessels lined with an attenuated endothelium with no underlying basement membrane. Dividing endothelial cells are most frequently found in the region of bone deposition 175-200 μm behind the apices of the growing sprout tips. A time-coursed, autoradiographic examination of cytokinesis revealed radio-labelled endothelial cells to appear at the epiphysis after a 24 hr period. The metaphyseal capillary sprouts represent a continuous, unidirectional angiogenic vascular network which grows by elongation from the region of bone deposition; this region remians a fixed distance behind the sprout tips. These findings are discussed in light of the growth dynamics between this vascular plexus and the epiphyseal growth plate.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 227 (1990), S. 351-358 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Endothelial cell division in the metaphyseal capillaries of growing rats was studied by serial sectioning and electron microscopic examination. The endothelium of these capillary sprouts forms a continuous attenuated saqmous lining. During endochodral bone formation these growing vessels possess a region of endothelial cell division which is located behind the sprout tip in an area where the microvascular wall consists of an endothelium and a discontinuous layer of perivascular cells. Examination of this region has shown the presence of junctional attachments between daughter cells even before cell separation is complete. Thus, the integrity of the vascular wall is not compromised during cell division. Junctional complexes with adjacent endothelial cells are also formed along the cleavage plane prior to the completion of cytokinesis. Numerous microvilli from both the daughter cells and adjacent endothelial cells often make contact and form junctions with the plasma membrane of the dividing cells. A model for endothelial junction formation between daughter cells during cytokinesis and the role that microvilli play in the process is proposed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The morphology of the metaphyseal microvasculature at the epiphysis was examined at both the light and electron microscopic level in rickets and rachitic reversal. The animals studied were normal, rachitic, and rachitic reversed at 8, 24, and 96 hours post-vitamin D administration. The overall architecture of the metaphyseal vessels was significantly altered throughout the intervals examined. In the rachitic animal, arterioles, venules, and capillaries were found adjacent to the growth plate, either directly apposed to the hypertrophic chondrocytes or separated from them by bone-forming cells. These vessels are in many ways similar to the larger arterioles and venules that normally supply the metaphyseal capillary sprouts, but in the normal growing animal are usually located 350-500 μm from the epiphyseal cartilage. The rachitic capillaries appear relatively well differentiated with a partial basement membrane and a perivascular cell lining. In early rachitic reversal, small vascular projections are induced to grow from the large diameter venules that border upon the hypertrophic chondrocytes. These vascular sprouts that invade the epiphyseal cartilage are quite undifferentiated, with no basement membrane or pericyte lining at the sprout apex and occasional abluminal endothelial cell projections. Within 96 hours, the metaphyseal microvasculature has returned to an apparently normal state with only capillaries at the cartilage-vascular interface and larger vessels (arterioles and venules) located several hundred microns deeper into the metaphysis. The sequential processes of differentiation and cessation of capillary growth followed by dedifferentiation and reinitiation of microvascular growth make the rachitic system a unique one in which to study angiogenesis.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...